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ABSTRACT 
Recently used modelling of industrial air emissions does not take into consideration the 
chemical conversion of various pollutants in the atmosphere. This can lead to incorrect 
assumption about concentrations and composition of waste gases near the recipient, 
especially in highly polluted urban areas. This is particularly valid for gas emissions 
being subject to conversion between their points of emitting and final destination. As a 
result of dispersion modelling of the diffusion, formation and correlation of waste  gases  
emissions  from point sources depending on the ambient ozone concentration, ambient air 
temperature and waste gases temperature, I came to the conclusion that the physical and 
chemical characteristics of the ambient air do influence the formation of secondary 
pollutants at a distance from the emission source. When performing environmental 
evaluation of certain equipment being a source of air emissions, we should take into 
consideration the pollutant’s behaviour in relation to the specific environmental features.  
 
Introduction 
Principal pollutants which are emitted from 
industry and are chemically converted in 
the atmosphere are sulphur oxides (SOх), 
carbon oxides (COх), nitrogen oxides 
(NOх) and hydrocarbons. They participate 
in photochemical reactions with the ozone, 
thus changing on one hand their structure 
and influencing the troposphere ozone 
concentrations on the other hand. Gases’ 
diffusion is strictly limited by wind direction 
and speed. Humidity and air temperature, as 
well as transitory solar radiation define the 
rate and direction of various chemical and 
photochemical transformations among the 
atmospheric gases and the emitted ones. 

We can take into account these factors 
after applying dispersion modelling for the 
individual pollutants. Modelling results 
give information about the cases’ behavi-
our in particular geographical and climate 
conditions, as well as about the presence, 
nature and concentration of background 

contamination. 
Transfusion, diffusion and pattern of 

waste gases is predicted by manipulating 
data for the chemical composition of the 
air, its humidity and temperature, as well as 
wind speed and direction. 

Materials and Methods 
In order to specify the relationship between 
the environmental conditions and the for-
mation and diffusion of pollutants emitted 
by point sources, I used a mathematical 
model for dispersion modelling. The model 
is developed and tested by the European 
Commission for predicting transport, at-
mospheric diffusion, physical and chemical 
conversion, optical effects and deposition 
of waste gases after discharge from the 
sources. Model predicts the spatial distri-
bution and chemical conversion of nitrogen 
oxide (NO) to nitrogen dioxide and oxides 
of sulphur and nitrogen (SOx; NOx) to sul-
phates and nitrates. The environmental 
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specifics are defined by the input data ne-
cessary for starting up the model, inclu-
ding: air temperature and humidity, wind 
speed and direction, intensity of sun radia-
tion, ambient concentrations of sulphur and 
nitrogen oxides, tropospheric ( ambient) 
ozone, temperature of waste gases etc. 

The model is based on several funda-
mental equations as follows: 
Initial Diffusion in a Buoyant Plume: 

   ,
u)h(

Q 2.94 = 2∆
χ   

where: 
h is the plume height above the stack; 
u is the wind speed; 
Q is the emission, and  
χ is the pollutant concentration in the 
plume centerline. 
Plume Rise: 
The final plume rise in PLUVUE II is calcula-
ted using the modified plume rise formulae of 
Briggs [3; 4; 5] defined as follows: 
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where: 
s is a stability parameter;  
F is a coefficient defined by the mass 
stream, ambient air temperature and gravity 
acceleration. 
Gaussian Plume Diffusion Prediction: 
After the plume has achieved its final 
height (about 1 km downwind), plume con-
centrations for uniform wind fields can be 
adequately predicted using a Gaussian 
model if the wind speed u at plume height 
H (or hs + ∆h, where hs is the stack height) 
and the rate of diffusion are known for the 
particular situation so that diffusion coeffi-
cients (σy, σz) can be selected: 
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Conversion of NO to NO2: 
NO to NO2 conversion can be calculated 
from a simple set of three reactions 

The first one is the thermal oxidation of 
NO to NO2: 

   NO2  O +2NO 22 →  
The reaction with ozone affects the con-

version of NO to NO2, too: 

.   O + NO  O + NO
 K

223

r

→
 

The reaction is fast, with a rate as per 
[10; 7; 11] at 25°C.  

The third reaction to conclude with, is 
the photolysis of NO2. 

Its rate is defined by [10]. 

   ,O + NO  h + NO
 K

2

d

→ν
  

Conversion of SO2 to SO4= and NO2 в 
HNO3 (NO3–): 
In clean background areas, the gaseous 
phase oxidation of SO2 and NO2 to sul-
phate aerosol and nitrate (nitric acid vapor) 
is primarily caused by the reaction of these 
species with OH·. Previous assessments of 
homogeneous (gaseous phase) oxidation of 
SO2 to sulphate estimated the proportion 
assignable to the reaction with hydroxyl to 
about 75% in clean atmospheres [1; 6] and 
as low as 40% in polluted urban air [9]. 
However, later estimations place these val-
ues much higher. Most recently the rate 
constant has been measured at 8.1 x 10-12 
cm3mol-1s-1 [8]. 

In order to define the atmospheric condi-
tions influence on the concentrations of 
emissions, mathematical model was started 
up with equal input data but different for 
the investigated parameter only. 

The influence of ambient ozone concen-
trations was determined for 0.02 ppm, 0.1 
ppm and 0.2 ppm. Destinations for which 
the results were generated include 1, 2.5, 5; 
10, 12.5 and 15 kilometers from the emis-
sions’ source.  
The influence of  atmospheric temperature 
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Fig. 1.      

NOx - ambient ozone concentration 
dependency
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was determined for -5, 0, 10 and 25 ºC. 
The influence of waste gases temperature 

was determined for 500, 1000 and 1500 ºC. 
Results from the analysis are presented 

on Figs. 1 – 5.  
Results and Discussion 

On Fig. 1 the influence of ambient ozone 
concentrations on the concentrations of 
nitrogen oxides is presented. The concen-
trations of NOx  decrease  with the distance 
from source. For each destination, there is not 
any influence of ozone on NOx quantity. 

Rising ambient ozone concentrations 
lead to increased ratio of nitrogen dioxide 
to total nitrogen (NО2/NTOT) for any des-
tination from the source. This increase is 
due to reaction between NO and О3 to form 
NO2, which is proved by the decrease of 
the two gases with time. Two gases are 
consumed in the reaction to produce nitro-
gen dioxide. After the 5th km the available 
quantity of NOx is depleted and the forma-
tion of NO2 is stabilized. 

On   Fig. 2,   we  observe  a  similar ten-
dency, this time for increasing the ni-
trate/total nitrogen ratio as well as the sul-

phate/total sulphur ratio (SО4-/STOT). This 
tendency is valid with increasing distance 
from the source and ozone concentrations. 
As far as (NО3-) is formed in reaction bet-
ween NO2 and (OH·), when increasing the 
quantity of the dioxide, the concentration 
of nitrate rise up as well. 

When defining the influence of ambient 
air temperature on the emissions composi-
tion dependence on the nitrate and sulfate 
ions was observed. 

From Fig. 3 we can conclude that the 
concentration of ions depends on the dis-
tance from the source and on the tempera-
ture as well. The ratio (SО4-/STOT) and 
(NО3-/NTOT) are increased for any desti-
nation and in relation to the temperature. 
The highest concentrations of nitrate and 
sulfate ions are observed at temperature 
25 ºС followed by 0 ºС, 10 ºС and -5 ºС. 
Both ions are formed when the corres-
ponding oxides react with the hydroxyl 
radical (OH·). This fact can explain the 
similar amplitudes of variation in ion con-
centrations with distance and air tempera-
ture. It seems that OH· activity enhances 
depending on the temperature as follows:  
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Fig. 2.      

 SO4/STOT and NO3-/NTOT ration - ambient ozone concentration 
dependency
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Fig. 3.      

SO4
=/STOTand NO3

-/NTOT
ratio - ambient air temperature (0C) dependancy
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-5 ºС < 10 ºС < 0 ºС , and is highest at 
25 ºС. 

It is of interest to study the dependency 
of temperature on NOx concentrations im-
mediately after gases’ discharge. On Fig. 4, 

we can notice that in the starting (“zero”) 
second, i.e. immediately after discharging 
the emission, the air temperature does not 
influence the NOx concentrations. How-
ever, after the 10th second the rate of NOx  
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Fig. 4.    

  NOx / time dependancy from the ambient air temperature (0C) 
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Fig. 5.    

NO / time dependangy from the waste gases temperature 
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formation increases in the same order as for 
the ions: the lowest at -5 ºС <10 ºС <0 ºС 
and the highest at 25 ºС.  

The most essential dependency of waste 
gases temperature on the composition of 
emissions is presented on Fig. 5. 

In second “0” (not presented on the fig.), 
the concentration of NO increases in 
parallel with increasing the waste gases’ 
temperature. This trend is caused by the 

possibility of thermal oxidation to take 
place at higher temperatures. When nitro-
gen (N2) from the fuel or the atmosphere 
reacts with the oxygen at high tempera-
tures,  nitrogen  oxide  is   quickly  formed. 

This reaction runs at extremely high tem-
peratures in the combustion zone. 

In second “0” the temperature of gases is 
411.66 ºС; 690 ºС and 967 ºС . In the 10th 
second it is reaches a balance (148.5 ºС ) 
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because of quick mixing with the ambient 
air, and from this point on the tendency is 
that gases which have had lower tempera-
ture now accquire the highest concentration 
of NO for any destination. 

Summarizing the results, I can generalize 
the following dependencies between the 
physical and chemical characteristics of the 
ambient air and the nature of waste gases 
discharged from a point source (Table).  

REFERENCES 
1. Altshuller A.P. (1979) Atmos. Environ., 13, 1653-
1661. 
2. Briggs G.A. (1969) Plume Rise. U.S. Atomic 
Energy Commission Critical Review Series, TID-
25075, NTIS, Springfield, VA. 
3. Briggs G.A. (1971) Some Recent Analyses of 
Plume Rise Observations. Proc. of 2nd Int. Clean Air 
Congress, (H.M. Englund, W.T. Berry, Eds.) Aca-
demic Press, New York, N.Y., 1029-1032. 
4. Briggs G.A. (1972) Atmos. Environ., 6, 507-610. 
5. Calvert J.G., Su F., Bottenheim J.W., Strausz 
O.P. (1978) Atmos. Environ., 12, 197-226.  
6. Davis D.D., Smith D.G., Klauber J. (1974) Sci-
ence, 186, 733-736. 

TABLE  

 
Parameter 

Ambient 
ozone 

concen-
trations

Ambient 
air tem-
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SО4
–/STOT rate (mol.%) • •  
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Dependency NO / time   • 
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