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Computational challenges of proteomics
Large scale proteomics experiments have released a vast 
amount of biological data, collected in variety of repositories 
worldwide. The information volume of gathered biological 
data determines the information resource and capacity 
needed to store, analyze and extract valuable information 
and knowledge. Proteomics, as an emerging scientific field 
focused on protein structure and function, accumulates a large 
amount of biological data through separation of proteins by 
two dimensional gel electrophoresis, isoelectric focusing, 2D 
visualization of proteins, mass spectrometry, peptide mass 
fingerprinting, tandem mass spectrometry, etc. Bioinformatics 
in the domain of proteomics is a breath taking set of developing 
methods, as it is an important part of creating knowledge from 
the experimental data, with its models as protein folding, three 
dimensional structure of proteins, and prediction for structures 
and functions of unknown proteins.

On a lower level still, bioinformatics deals with the 
molecular basics of living organisms - the sequence of nucleic 
acids, the structure of genes and other functional elements 
of DNA, the sequence and structure of proteins, membranes 
and any other compound that comes into the light of scientific 
research. But no matter how small the physical object is, it can 
always create an enormous amount of information. The DNA 
sequences of a whole library of bacterial strains, the coordinates 
of thousands of atoms in a structure, the data from qPCR runs or 
the force curves of a hundred AFM-spectroscopy experiments 
- all these contain that much information, sometimes with such 
low quality, that it is impossible to gain any understanding 
of the underlying processes or objects without running some 

kind of algorithm to determine the quality and to extract the 
actual information the scientists are after. Thus, it can be said 
that the main object of bioinformatics is data. The state of the 
art high-tech equipment used in scientific experiments creates 
more and more information (like automated pipelines for high-
throughput screening of libraries or ELISA assays for example) 
that can only be handled by computers. Bioinformatics deals 
with that.

When it comes to computational biology of proteins, 
there is a large set of Internet resources, that integrates the 
data gathered experimentally for further analysis. One of 
the milestones in proteomics research is the Protein Data 
Bank (PDB) (5), that contains over 55 000 three dimensional 
structures of proteins resulting from crystallography or X-ray 
studies and created by modelling software. These real and 
proposed structures, however, do not cover all the proteins 
found in biological systems, as the resolution of a protein 
structure is a time consuming and expensive process. Medical 
related publications in scientific literature leads to quite high 
redundancy rate in bioinformatics databases, which could be 
visualized by clustering of the PDB entries with a BLAST 
algorithm. The clustering similarity evaluation turns up only 20 
229 clusters at a 95% cutoff. This redundancy can be observed 
in most databases.

The PDB is one of the main resources for structural 
information on proteins, and as such it is widely used 
in bioinformatics. There are, however, many sources of 
sequential information or servers that offer classification of 
proteins by structure and function. Some of those are Structural 
Classification of Proteins (SCOP), (18), The Universal Protein 
Resource (UniProt), (28), CATH (Class, Architecture, Topology 
and Homologous superfamily, a database of classified protein 
domain structures) (21).
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ABSTRACT
It is often said that bioinformatics is a knowledge based discipline. This means that many of the search and prediction methods 
that have been used to greatest effect in bioinformatics exploit information that has already been accumulated about the problem 
of interest, rather than working from first principles. Most of the methods and algorithms discussed in this paper adopt these 
knowledge-based approaches for protein studies. Typically we have some given examples i.e. data of a given class or function, 
and we try to identify patterns in that data which characterize these sequences or structures and distinguish them from others 
that are not in this class. The purpose of this paper is to describe the basic conceptual methods and adjacent algorithms and 
applications that are used to obtain better and more reliable information of the studied characteristic patterns.
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What Bioinformatics aims to achieve
Bioinformatics can both analyze proteomics data and work 
as a supplement to other proteomics methods in order to 
increase the quality of results. There are methods like mass 
spectrometry that depend heavily on Bioinformatics for the 
analysis of their results. Furthermore, Bioinformatics develops 
ways to enhance the results of MS-based methods (27) or offer 
non-bioinformaticians and researchers in specialized fields an 
easier way to analyze their data (6).

The development of algorithms for the direct elucidation of 
biologically significant data is another way for Bioinformatics 
to provide aid in proteomics research. Nagarai et al. (19) have 
developed a method for better prediction of transcription factor 
binding sites using datasets from binding assays, while Cai 
et al. (8) created their algorithm for the same problem based 
on the proteins amino acid sequence and physicochemical 
properties.

Another high value product of Bioinformatics are the results 
of various structural prediction algorithms and pipelines. There 
are solutions to predict protein interactions (30) and interaction 
affinity (29), to find unknown receptor activators (17) or to 
create models for known protein interactions (26). Evaluation 
algorithms are also used to classify proteins: Otto et al. (22) 
used different Bioinformatics tools to identify, annotate and 
compare analogous and homologous enzymes, that can be 
used to study the evolution of biochemical pathways and find 
potential drug targets.

Conceptual methods for protein analysis

Sequence alignment
The simplest and yet powerful method for protein analysis 
is the comparison of their primary amino acid sequence. The 
most common information this might provide is the distance 
of relationship between the compared proteins. By pairwise 
aligning and scoring a group of proteins, a phylogenetic tree 
based on the distances can be built. This is usually done by 
creating global sequence alignments that take into account 
the whole sequences of the two proteins. When the overall 
sequence identity of the proteins is low it is possible that a 
global alignment will miss pockets of high scoring matches in 
the sequences, especially when they are far apart. In this case 
local sequence alignment is used. It is characteristic for local 
alignments to minimize the penalties for introducing gaps into 
the alignment, thus making possible for far apart regions to be 
matched and scored higher. This is useful when the proteins in 
question share only one domain or another smaller structural 
or functional element.

Multiple sequence alignment is possible in the same way 
as when two single protein sequences are aligned. The only 
difference being that the one sequence that is added to the 
alignment is scored against all of the sequences already in it 
at the same time and the results being totaled in the scoring 
matrix.

One algorithm used for global sequence alignment is the 
Needleman-Wunsch algorithm (20). It uses a scoring matrix 
that states how good the score between every two amino acids 
is. When the alignment is built for every position in the two 
sequences a score is calculated as the sum of the previous 
score plus the score for the two amino acids in question. If 
introducing a gap scores better - it is done; if matching the two 
residues is better - they are matched. Scores are recorded in a 
matrix that contains the two sequences at its “axes”. The final 
alignment is read backwards from the end of the matrix by 
following the right scores. A simple change in the algorithm 
leads to the so called Smith-Waterman algorithm (25). It deals 
with local alignments by nullifying the gap penalty. This way 
matching separate domains or other parts of the sequence lead 
to high scores rather than being offset by the high negative 
score of a large gap between them (Table 1).

TABLE 1
Algorithmic techniques used to solve bioinformatics tasks in 
proteomics

Bioinformatics Tasks Algorithmic Techniques 
Mapping DNA Brute Force, Exhaustive Search

Sequences Comparison Dynamic Programming, Divide 
and Conquer

Gene Prediction Dynamic Programming

Finding Signals Brute Force, Exhaustive Search, 
Greedy Algorithms

DNA Arrays Clustering, Classification analysis
Genomic Rearrangements Greedy Algorithms
Molecular Evolution Clustering, Classification analysis

The most commonly used sequence alignment algorithm 
is called BLAST (Basic Local Alignment Search Tool) (1). 
Simply put, BLAST finds high similarity spots in the two 
sequences and then builds upon them to create the final 
alignment.

Sequence alignment is an important tool in Bioinformatics 
and the mentioned algorithms have undergone a lot of changes 
and improvements to make them faster, able to compare a 
single sequence to a whole database of proteins or genes, and 
give more meaningful results. An improvement that aims at 
that is the Psi-BLAST (Position-Specific Iterated BLAST) 
(2). It runs a normal BLAST round over the database and then 
builds a scoring matrix from the results. This matrix is used 
in the second iteration and gives more distant sequences a 
chance to emerge in the result. If another iteration is started the 
matrix is rebuilt from the second results and so on. This way 
it is possible to find not-so-similar sequences that can still be 
reasonably related to the search sequence.

Secondary structure recognition
The next step after sequence analysis is the elucidation of the 
secondary protein structure from said sequence. Secondary 
structures are divided into several generally used types: alpha 
helices, beta strands and undefined structure sequences (coils) 
as a possible classification of secondary structure elements. 
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Some prediction programs use a beta-loop structure that 
connects beta strands and the Dictionary of Protein Secondary 
Structure (DSSP) (16) defines eight different structural 
elements with a selection of different alpha and beta states, 
bends, turns, and coils.

In general there are three groups of methods that deal 
with secondary structure prediction (31). The first group 
comprises statistical methods, based on the propensity of 
amino acid residues to form a certain structure. The propensity 
is calculated by analyzing a set of know protein structures 
and noting the secondary structure elements in which the 
residues take part. The first such methods used a small amount 
of resolved protein structures that were available at the time, 
but the set was gradually expanded for better statistics. More 
recent methods use whole stretches of amino acid residues in 
order to take into consideration the local interactions between 
residues, which are also important for secondary structure 
formation. Some algorithms use the positions of residues to 
build scoring matrices (15).

The second group of methods makes use of empirical 
information about the residues in the polypeptide chain: 
charge, hydrophobicity, size and shape, H-bond formation, 
and other physical and chemical properties. Those are called 
knowledge-based methods. They still use the statistics from 
the previous group, but they also complement it with more 
information. Another often used characteristic is the residue 
conservation, found by multiple sequence alignment. The 
use of residue conservation generally improves the results of 
prediction methods.

The last group of methods are the machine learning 
methods, like neural networks and Hidden Markov Models. 
They are computer algorithms that are trained on a training 
dataset and then used for structure prediction on a test dataset 
to define their accuracy. They are not bound to certain rules 
and physical models concerning the relationship between the 
amino acid sequence and the structure of the protein: their 
internal parameters are just adjusted to best fit the training 
dataset during the training period, and this makes the proper 
selection of the training data very important. There are 
several webservers built that use some kind of neural network 
implementation for secondary structure prediction such as 
Jpred (10), PredictProtein (24) and PSIPRED (7, 15). Another 
server, PREDATOR (14), uses knowledge-based database 
comparison.

A particular class of proteins deserves a special note when 
it comes to secondary structure prediction. Transmembrane 
proteins have regions that span a membrane structure in 
the cell and those have specific properties due to the highly 
hydrophobic nature of the membrane. It is possible to predict 
transmembrane regions by averaging the hydrophobicity over 
a stretch of amino acid residues, taking into account that the 
stretch is also limited in length by the membrane. This means 
looking for groups of 15 to 30 hydrophobic residues, as the 
thickness of an average membrane (30 angstrom) does not 
allow a longer or shorter sequence. Peptide chains that cross 

the membrane more than once may include helices with both 
hydrophobic and hydrophilic residues, usually separated on 
opposite sides of the helix. Such helices are called amphypatic.

Structure alignment
Some basic algorithms for structure alignment need a pre-
existing sequence alignment of the sequences, and consist of 
four steps. First, the center of masses for each of the structures 
at hand should be computed. Second, the two structures need 
to be overlap, so that their centers of mass are matched. Third, 
the angle difference between the positions of each pair of 
corresponding residues is to be computed using the center of 
mass as a starting point. Fourth, one of the structures is rotated 
by the median angle difference.

The next step to a more complex structure alignment is to 
generate a distance scoring matrix from the existing aligned 
residues and to use it to generate a second sequence alignment. 
This second alignment is then used in the same way to further 
rotate the structure and then build the next matrix, and the 
next alignment, and so on. This is repeated until there is no 
significant change in the RMSD (root mean square deviation) 
of the two aligned structures.

Another, more complex algorithm for structure alignment 
employs the so called double dynamic programming. It uses a 
two level structure of aligning, that makes it possible to score 
the pairwise matching of residues and use the scores themselves 
as information for a scoring matrix. First a series of scoring 
matrices are created, each of them based on the assumption 
that a specific pair of residues match and are perfectly aligned 
in the final structure. From this pair of matching residues an 
alignment is built with regular dynamic programming in order 
to give a score for the matching of every other pair of residues. 
A simple scoring can be created by fixing a reference system in 
each of the two molecules using the residues before and after 
the “perfect match” pair, overlapping the two reference systems 
and then using the distance between the positions of the two 
residues in their respective reference systems (that can now 
be observed as a single system). More complex scoring can 
be achieved by taking into account the direction of the vector 
between the two residues, the orientation of the residues, their 
place in the sequence or in space (how far they are from the 
“perfect match” pair of residues).

When more than two structures are involved, there are few 
different ways to superimpose them all. A multiple sequence 
alignment can be used to define the sequence in which the 
structures will be added to the structure alignment. First the 
two structures that have the best match in sequence are aligned, 
and then the next structure that best matches them is added. 
The process is repeated for all the structures. This presents a 
logical way of building a multiple alignment, but is vulnerable 
to biasing the results towards structures, similar to the starting 
one, that was used in the multiple sequence alignment.

3D structure prediction
The computational biology of proteins is always tightly 
connected with defining the functional characteristics of 
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a protein or a set of proteins. One of the important steps in 
the analysis of functional characteristics is the accurate three 
dimensional (3D) model of the protein structure. This scientific 
problem is currently solved by two different approaches:

•	 Ab initio methods
	 Ab initio methods are used for making predictions about 

protein features using only a computational model, 
without extrinsic comparison to existing structures. 
These methods relate on simple physical and chemical 
assumptions as free energy and conformation, to build 
a model of a protein. A key element of these algorithms 
is the confirmation assessment step, which determines 
to great extent the method precision.

•	 Comparative modelling methods
	T hese methods are based on previously determined 

features and their connections with certain 2D or 3D 
structural patterns. These methods, including threading 
(fold recognition) and homology modeling (comparative 
modeling), rely on detectable similarities between the 
modeled sequence and a set of known structures.

Modeller is a computer program that models three-
dimensional structures of proteins and their assemblies by 
satisfaction of spatial restraints. A three dimensional model 
is generated by optimization of a molecular probability 
density function, which is optimized with the variable target 
function procedure in Cartesian space that employs methods 
of conjugate gradients and molecular dynamics with simulated 
annealing. In practice, Modeller could be generally divided 
into four main bioinformatics protocols, such as: model a 
sequence with high identity to a template; model a sequence 
based on multiple templates and bound to a ligand; increase 
the accuracy of the modeling exercise by iterating the 4 step 
process, and model a sequence based on a low identity to a 
template. Modeller can also perform multiple comparisons of 
protein sequences and/or structures, clustering of proteins, and 
a search of sequence databases.

Nest is a program for modelling protein structure based 
on a given sequence-template alignment. Nest could execute: 
homology model building; composite model building; model 
building based on multiple templates; structure refinement, 
and sequence-alignment tuning. The final step of the Nest’s 
calculation is based on the energy function, consisting of the 
following parameters: van der Waals energy, hydrophobic, 
electrostatics, torsion angle energy, hydrogen-bond network 
energy of the template, and statistical energy of a residue’s 
solvent accessibility.

When compared, the Nest algorithm is producing the 
most accurate loop conformations, although the difference 
between Modeller and Nest in loop building is not statistically 
significant (11).

Mutation analysis
The computer simulation of a mutation and its effect on 
protein structural and functional properties is closely related to 

homology modeling. However, there are other possible ways 
to look at the change induced by a mutation and properties 
that homology modeling cannot describe. One such method 
is proposed by Piana et al. (23), who investigated the effect 
of point mutations on the stability of protein folds using an 
atomistic approach and molecular dynamics simulations.

Fold recognition
Fold recognition uses several sources of lower level 
information on the protein structure like predicted or known 
secondary structure, contact energy functions (12), sequence 
profiling, evolutionary analysis and Hidden Markov Models 
(described later) to reach the folded state of the protein. There 
are also databases and methods for protein classification based 
on folds like SCOP or PFRES (9).

Domain classification
As a functional unit, a protein domain is more conservative 
as a structure in 3D space. The relations between different 
domains and their functional representation are of interest 
both to proteomics and bioinformatics. There are several main 
resources, dealing with domain classification.

The CATH database sets protein domains in a four-level 
hierarchy according to their CLASS (secondary structure 
composition), ARCHITECTURE (shape formed by the 
secondary structures), TOPOLOGY (connectivity order of the 
secondary structures) and HOMOLOGOUS SUPERFAMILY 
(structural and functional similarity). The classification of 
individual protein domains is performed by several algorithms: 
CATHEDRAL, SSAP, DETECTIVE, PUU, and DOMAK. 
CATH is partially manual, since classification of Architecture 
is done by visual inspection.

Some algorithmic concepts in Bioinformatics
A common task in bioinformatics is to classify sequences into 
a number of different categories. In the simplest case there 
are only two categories: 1) the sequences belong to a group of 
sequences of interest, and 2) when the sequences do not belong 
to it. A more general case is when there are several categories 
and it is necessary to decide into which category the new 
sequence best fits. Probabilistic models can be developed to 
address questions of this type (3) (Table 2).

Hidden Markov Models (HMMs) are abstract mathematical 
machines which are used to model certain types of probabilistic 
processes which operate, typically but not necessarily, over 
time. Time is, in most cases, viewed as a discrete concept, 
i.e. it is viewed as a sequence of time steps - step 0, step 1, 
step 2, ..., step t, etc. The HMMs are probabilistic machines 
because at each moment of time the symbol that is to be output 
and the next state the machine will go into are defined by two 
probabilistic functions – these are the so-called transition and 
emission functions. The transition function specifies given a 
current state what the probability is that the next state will be 
as it is expected. And it has been done so, for each couple of 
states. This is the so called Markov property – the next state 
depends only on the current state and not on any of the states 
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further ahead in the future. Generalizations of HMMs exist 
where the next state depends on the last k states only (in the 
classical HMM case k=1). What is viewable from the outside 
(of the HMM) is just the sequence of the emitted /generated 
symbols - hence the term ‘hidden’ (4).

In a Markov model of protein sequence the probability 
that any amino acids will occur at a given position depends 
on which amino acid lies immediately before it. In an Hidden 
Markov Model (HMM) the probability of an amino acid 
depends on the values of hidden variables determining which 
state of sequence it is in at that point (e.g., helix or loop region 
of a membrane protein).

HMMs can be trained to represent families of sequences. 
When a given sequence is compared to the model, the optimal 
path of the sequence through the states of the model can be 
calculated. This allows to be predicted which parts of a 
sequence are corresponding to which states in the model. 
A particular case of this is profile HMMs where the model 
describes a sequence alignment, and calculating the optimal 
path through the model corresponds to aligning the new 
sequence with the profile.

Pattern recognition methods based on protein sequence 
alignment are attempted either to encode the conservative 
regions or to apply certain probabilistic approach to work with 
some statistical inferences and properties of the sequences. 
In bioinformatics applications the data usually are short 
segments of protein or DNA sequence - say 10 - 20 residues or 
nucleotides. A sequence can be encoded into inputs in several 
ways. The input signals determine the signals produced by the 
hidden layer, which in turn determine the signals of the output 
layer. Neural Networks (NNs) are machine learning algorithms 
particularly suited for classification and pattern recognition 
problems (4). Some of the most successful methods of protein 
secondary and tertiary structure prediction use NNs. Artificial 
Neural Network (ANN) is a computing paradigm inspired by 
the way biological Neural Networks work. The building block 
of each biological neural network is the neuron. In biological 
terms this is a cell which accepts input from many other neurons 
via its dendrites and generates output via its single axon. The 
axon though is used to pass the output to many other neurons at 
once - this is done at junction places called synapses. Artificial 
neural networks can be viewed as a more extended variant of 
a directed graph where each node is an artificial neuron. One 
of the functions related to neurons is the output function. The 
decision whether to have a transition or not is typically left to 
another function (related to the node n) which is usually the 
so-called threshold function.

The principles of SVMs (Support Vector Machines) are 
close to these of NNs as a machine learning algorithm. For 
any given input the algorithm gives a Yes or No output. The 
value of the output depends on the internal variables of the 
programme. As with NNs, SVMs are trained by optimizing the 
internal variables of the algorithm such that it gives a correct 
answer for as many as possible of the examples in the training 
set. When the SVM will be used further it will predict that 

proteins with similar profiles to the positive examples are 
also members of the class. SVMs are another way of solving 
problems that are not linearly separable. SVMs are worked 
mostly with gene-expression data and classification analysis in 
DNA or protein microchips (3).

TABLE 2
Models used for representing some bioinformatics tasks in 
proteomics

Bioinfromatics Tasks Theoretical Models
Sequencing DNA Graph Models
Sequences Comparison Combinatorial Models

Finding Signals Hidden Markov Models, 
Probabilistic Models

Identifying Proteins Graph Models
Repeat Analysis Combinatorial Models
DNA Arrays Graph Models, Tree Models
Molecular Evolution Tree Models

In the context of this paper on pattern recognition a general 
point about prediction methods is that the most successful are 
the knowledge based methods - i.e., they look for similarities 
to sequences of known structure, or they use training sets 
of known examples, like the machine learning approaches. 
Ab initio methods, beginning only with a single sequence 
and fundamentals such as interatomic forces tend to be less 
successful. Thus pattern recognition techniques are providing 
an answer to the practical question of structure prediction and 
gradual improvements are being made.

Conclusions
In the post genomic era and in the beginning of the era of 
synthetic biology, the methods of bioinformatics in proteomics 
are crucial as a tool for achieving not only high performance 
of knowledge generation, but also an increased quality of the 
resulting information. It has been proven that not the simplified 
accumulation of data, but its integration will be the key to a new 
knowledge discovery. A trend in the past several years shows 
that many repositories were redesigned into highly integrated 
databases; many proteomics databases have implemented new 
algorithms for data analysis, prediction and error checking; 
many databases were inter-connected and integrated into larger 
databanks, utilizing state-of-the-art information technology 
methods like artificial intelligence. This trend shows the 
extreme need for data integrability and interdisciplinary 
view over the vast amount of generated experimental data in 
proteomics.
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