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Introduction
Structure prediction tries to bridge the gap between the huge 
amount of sequenced protein chains and the relatively small 
number of resolved protein structures. While the prediction of 
tertiary structure is still highly restricted (6) and multi-chain 
protein complexes can be predicted via docking, the prediction 
of the secondary structure (SS) of amino acid sequences has 
been in development for several decades. A large number of 
methods have been proposed, each of them with a different 
approach to the problem. Recently results have approached 
80% accuracy, with the possibility of further improvement 
by adding long range interactions in the prediction process 
(14). This means that four out of every five residues have their 
structure properly assigned from the three possible states – 
alpha helix, beta strand, or coil. Some state-of-the-art methods 
use multiple sequence alignment directly or build amino acid 
profiles of the homologues of the query sequence (9, 12, 15), 
while others include complex mathematical models like the 
Artificial Neural Networks that are commonly used (2, 9, 12, 
14, 15, 17).

Here we present a method for secondary structure prediction 
that can also infer additional structural information about the 
protein sequence. As it is a novel approach that differs from 
all known methods, we discuss its possible use in consensus 
predictions and prediction cross validation. The method breaks 
known protein molecules into pairs of secondary structure 
elements, called S-motifs, which are used to infer the probable 
structure of the query sequence. It gives results with quality 
comparable to the best achieved so far, which shows that it can 

be used together with other prediction methods without fear of 
lowering the quality of prediction.

Materials and Methods 
Motif definition
S-motifs are a way to represent the secondary structure of 
a protein. Each motif consists of two secondary structure 
elements connected by a loop region. They were first used to 
explore the diversity of the loop regions in available protein 
structures (5), and later, to characterize the novel protein 
folds that were added to the databases concerned with the 
classification of protein structures (SCOP, CATH) (4, 11, 13).

The basic features of an S-motif are shown in Fig. 1. 
These parameters describe the relative position of the two 
secondary structure elements to each other. There are four 
main geometrical parameters that define every motif uniquely: 
1) D, the length of the vector connecting the end of the first 
SS element and the start of the second one, 2) θ, the angle 
between the main axes of the two elements, 3) δ, the angle 
between the axis of the first element and the vector, and 4) 
ρ, the angle between the axis of the second element and the 
norm to the plane formed by the axis of the first element and 
the vector between the two. The parameters are binned as 
described by Fernandez-Fuentes et al. (5), creating groups of 
similar S-motifs that share their geometry and the type of the 
structural elements that they consist of.

An important property of S-motifs is the fact that every 
consecutive pair of them shares one of the secondary structure 
elements. That is, every second element of every motif, except 
for the last in the sequence, is also the first element of the next 
motif. The classical direction for amino acid chains (N-terminus 
to C-terminus) is used. Also, a motif is not tied to the particular 
sequence that one can encounter in a specific protein. There are 
many occurrences for every S-motif in many different protein 
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molecules, and most of them differ by their sequence and the 
length of the two secondary structure elements.

Protein test set
In this work the new method was tested on protein sequences 
with prevalent beta-strand secondary structure. The dataset of 
56 protein chains was selected from the latest release of the 
Protein Data Bank (www.pdb.org) (1) by the time of writing 
of this paper (September, 2011) with the following restrictions:

•	 chain length of 150 to 450 aminoacids;
•	 at least 90% of secondary structure elements are beta-

strands;
•	 maximum 70% sequence identity in the data set 

(redundancy threshold).
The length restriction is made in order to lower the chance 

of possible protein chains with only one secondary structure 
element, as they do not contain a full S-motif. Seventy percent 
of the structures in the PDB satisfy this condition. As we wanted 
to test only beta proteins, we set a minimum amount of beta-
strands for the contents of the protein. Finally the redundancy 
of the set was reduced using the maximum identity feature of 
PDB for a total of 56 protein structures.

S-motif database
A partly redundant dataset from the PDB database was used 
to build the starting set of S-motifs used for prediction. PDB 
sequences were filtered with a 90% identity cut-off. 

The S-motif database that was built for the method contains 
links to the amino acid sequences of the known motifs, and is 
used to find the secondary structure elements that best match 
the query sequence. It is divided in four major parts, defined 
by the type of secondary structure that makes up the motifs in 
them. These parts are HH, HE, EH, and EE, where H stands 
for alpha-helix and E stands for beta-strand, according to the 
general notation of secondary structure.

Motifs are further divided by their geometrical bins, that is, 
the range of values each of the four parameters take. Each bin 
is treated as a single type of motif and is used as a reference 
to all the motif instances with these particular geometrical 
parameters. The links to the actual amino acid sequences 
are indexed by length for faster access when searching the 
database.

Motif matching
Motif sequences are matched to the query by direct comparison 
of identity. No gaps are allowed. A threshold of 65% was 
selected as a proper level of identity for the selection of 
matching motifs. Higher threshold levels detected only the 
query sequence motifs for some of the test proteins. Lower 
thresholds increased the number of detected motifs that did not 
match the type of secondary structure of the query sequence 
and increased the error in the results (not shown). This effect 
was observed very strongly when the size of the window (for 
the initial step, see below) or the length of the element (for 
every following step) was small.

Search methodology
The prediction is done in steps that overlap known motif 
sequences with the query sequence. Every search starts with 
an initiation step that aims to match a starting S-motif to the 
beginning of the sequence. This step uses a moving window of 
variable length. As we have no information about the first motif, 
the first step does an exhaustive search of the motif sequences, 
retrieving those that match the window in the current iteration 
with a quality above the threshold. An initial pool of starting 
motifs is built, and all its members are considered for the next 
step.

The overlap of S-motifs is utilized to “grow” the chain of 
motifs to the end of the query sequence. The second element 
of every matching instance of a motif is taken in turn as a 
template, in order to determine what part of the query sequence 
should be used in the second step. Then a search is performed 
in the respective half of the database that matches the type of 
the second element; for example if it is a helix, then only the 
HH and HE parts are searched, as only those contain motifs 
that start with a helix. Matching motifs that are returned by the 
second step are pooled and the process is repeated until the end 
of the query sequence is reached or no matching motifs can be 
found to continue the chain.

As a final processing step the secondary structure of every 
position in the query is determined by consensus, using the 
matching motifs that were detected during the search.

Results and Discussion 
The new approach is compared here with two of the best 
prediction softwares available, representative of the older 
statistical approaches – GOR IV (8) and the new and widely 
used Neural Networks (Jnet) (3). The predictions with the new 
method were done locally with an automated script, while the 
available web interface was used for the other two methods. 
Results are summarized in Table 1. The software using Neural 
Networks is much more effective at predicting secondary 
structure than the direct knowledge based approach. The new 
S-motif method stands in the middle, having both the low 
quality results of GOR IV and the very high quality predictions 
of Jnet, which leads to the higher standard deviation of results. 
The average prediction quality of the method is comparable to 
that of Jnet.

TABLE 1
Summary of the results for the prediction of the test protein set 
by the three methods

Method Average 
quality Quality range Standard 

deviation
S-motifs 76.99 26.26 – 100.0 19.45
Jnet 76.95 55.87 – 90.28 6.29
GOR IV 42.31 22.58 – 73.44 10.21
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Fig. 1. The geometric parameters of an S-motif. M1 and M2 are the main axes 
of the two SS elements, and are defined as the vector of the shortest of the 
principal moments of inertia of the element. Figure adopted from Fernandez-
Fuentes et al. (5).
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Fig. 2. Plot of the prediction quality of the three methods. Results are ordered 
by quality for each of the methods, result numbers do not correspond to a 
particular protein sequence.

A more visual plot of the results can be seen in Fig. 2, 
where the predictions of the whole set for each method are 
ordered by quality. The average prediction quality corresponds 
to the area under each of the curves. It can be easily seen that 
the 20 to 25% lower end predictions are the reason why the 
new method does not outperform Jnet. These predictions are 
a result of the current restrictions of the method, and the new 
content included in the PDB database between the building 
of the S-motif dataset and the current moment when the test 
was carried out. Currently the length of the starting element 
of the first S-motif is limited to 20 amino acids to decrease 
search times in the initial step. This makes the algorithm 
miss motifs with longer elements, and if no other motif that 

contains a smaller element is found, the prediction contains 
no motifs. On the other hand, several thousand new structures 
were introduced into the PDB, widening its sequence base, and 
not all proteins in the test set were represented in the S-motif 
database. This factor has an even higher impact because of the 
type of test set that was selected for the comparison, as all-beta 
sequences contain a large number of amino acid residues with 
specific physical-chemical properties. 

Specific characteristics of the algorithm
No gaps can be introduced in the sequence comparison as they 
cannot be transferred meaningfully into a structural comparison. 
This sets the approach apart from regular alignment-based 
methods that simply search for the best homologous sequence 
on which to model the structure of the query. S-motifs carry 
information about both the secondary and tertiary structure of 
the protein sequence. As a result when the method compares the 
query to a possible S-motif the “alignment” carries structural 
information as well. The ability to introduce gaps is removed 
on purpose because there is no way for the method to predict 
the possible change in overall tertiary structure if one of the 
elements of the motif has different length, or if a certain amino 
acid is present at a certain position. Such a change could mean 
a motif with a different set of geometric parameters, which 
leads to a different set of motif sequences from the known 
protein structures.

Apart from the decrease of quality when a lower matching 
threshold is used, there is also a performance issue connected 
with this particular setting. When a very low threshold for 
the matching is set, there are a large number of returned 
motifs for every initial motif in the pool in the second and 
every consecutive step. This leads to a geometrical increase 
in running time when the threshold is lowered. On the other 
hand, a high threshold may stop the building of the S-motif 
chain too early, or may even filter any initial matches, so that 
no prediction is made.

In the current sequence base of the PDB there are around 
8000 sequence fragments that constitute both an alpha-helix 
in some structures, and a beta-strand in others. About 95% of 
these fragments have a length of 3, 4 or 5 amino acids. At the 
time these numbers were determined there were 1  260  000 
secondary structure elements in all the chains in the PDB, and 
204 000 had sequences from that group. This leads to ambiguity 
when detecting the secondary structure just by the sequence 
and increases the chance of error in 1 out of every 6 predicted 
elements. This is of course the upper bound of the error, as 
most elements will have a predominant secondary structure 
which by consensus can mask the other, less frequent state 
of the fragment. The predominant structure will be properly 
predicted most of the time while errors will arise when the low 
frequency structure is encountered. The method presented here 
has an advantage when this type of error is considered. Motifs 
are found by their first element, which in most cases is already 
predetermined in its secondary structure by the previous motif 
in the chain. Apart from the case of starting motifs, this removes 
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the probability of selecting the wrong structure. Even when a 
previous motif is not present and hits with the wrong type of 
SS can appear in the initial pool, the matching is done over the 
whole motif sequence, which includes the loop region and the 
second SS element. The frequency at which two consecutive 
ambiguous fragments are encountered is much lower, and the 
matching of the loop region lowers the probability of getting a 
wrong match even further.

Even if a motif with the wrong SS type is selected, there 
are two factors that prevent it from lowering the quality of the 
prediction. The first one is the fact that in the end a consensus 
is still used to select the proper structure type, which will 
decrease the error rate based on the frequency with which 
the non-predominant structure type is encountered, as stated 
above. The second factor is the matching of the next motif in 
the chain. In the case of an ambiguous fragment in the second 
element of the last matched motif, we will have both types of 
structure available for that fragment in the pool of selected 
S-motifs. All of these motifs will be considered for the next 
step of elongation of the motif chain, and so both the motifs 
with the correct and the wrong structure will be matched to 
the next part of the query sequence. Fragments with the wrong 
structure type will have a different structural neighborhood in 
their respective protein folds, which leads to large differences 
in the loop regions and the next SS element, both in structure 
and in sequence. Motifs containing those fragments will not 
be continued in the next step, which limits the error in the 
consensus sequence of the particular element.

Further development
We are considering replacing the initial step of the algorithm 
with a BLAST search with the sequence window against 
a database of all first elements of motifs that start a protein 
structure. This may include the first elements of all motifs, 
irrelevant of whether they start a structure, in order to take 
into account the possibility that an unknown protein may 
start with a rare S-motif. As BLAST has been widely used in 
sequence alignment for the last two decades it may be possible 
that it may perform better in terms of speed than our current 
exhaustive search method. Again, adjustments should be made 
to the settings of the algorithm not to allow creating gaps in 
the alignment, as these are not acceptable when comparing 
structures.

Currently our method gives a slightly broader spread 
of prediction qualities compared to Jnet. We are, however, 
working on improving the lower quality predictions and 
bringing the quality range closer to that of NN methods, thus 
giving higher reliability.

Another way of preventing wrong predictions may be the 
determination of acceptable geometric parameters for every 
combination of two or more S-motifs. As there is spatial 
information included in every motif, certain combinations may 
be structurally impossible even though a sequence match is 
found. This is a development that is considered in the light of 

the possible use of the method as a step in tertiary structure 
prediction.

As the determination of the geometrical parameters requires 
computational time, the S-motif dataset was built once and was 
not updated for the last six months, which led to a partly lower 
quality of prediction. An update of the sequence base of the 
current S-motifs will increase the overall quality of prediction 
of the method. Ways to update the database are considered an 
important feature for the future development of the software.

Conclusions
The average quality of the results from state-of-the-art methods 
is slowly increasing past 70% correctly predicted residues. In 
theory the maximal average quality for this particular problem 
is thought to be around 80%. This is due to the errors in defining 
the exact starting and ending position of secondary structure 
elements in the sequence. Even when the ends of the elements 
are determined from the experimental protein structures, the 
different algorithms – DSSP (10), DEFINE (16), STRIDE (7), 
give slightly different results. The final quality of secondary 
structure prediction will always depend on the quality of the 
data used for the training of the methods. The new method 
presented here gives an improvement of quality with an 
average of correct predictions around 75% and an increase 
in the upper bound of prediction quality compared to one of 
the best methods available. The lower quality results that are 
observed in some cases are partly due to the introduction of 
novel protein sequences in the PDB, that are not represented by 
the training set used to build the S-motif database. However, 
when there are representative sequences in the database, the 
actual average quality of prediction is closer to 85%. It is the 
author’s belief that using the S-motif model in the prediction of 
secondary structure can push the upper boundary of prediction 
quality and introduce a novel approach to use in consensus 
predictions and the validation of other methods.

Furthermore, the new method also infers additional 
structural information about the protein in the form of the 
respective S-motif geometry. This is why it is expected to be 
suited as a step to be followed up by other prediction methods 
that aim at the protein’s tertiary structure.
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