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Introduction
The concept of ontology
The classical meaning of the term ontology originates from 
philosophy. The word has a Greek origin (όντος – of being, 
-λογία – study, science, theory) and can be literally translated 
as “the study of being”. In philosophy it denotes the study 
of existence (or reality in general), together with the basic 
categories of being and the relations which exist among them. 
Even though the word is Greek, the first existing record of it is 
the Latin form ‘ontologia’ which appeared in the works of the 

German philosophers Jacob Lorhard (1561 – 1609) and Rudolf 
Goeckel (1547 - 1628) at the beginning of the 17th century. 
In philosophy ontology is viewed as part of the major branch 
known as metaphysics. It deals with questions concerning 
what entities exist or can be said to exist, how such entities can 
be grouped, how they can be organized within a hierarchy, and 
divided or subdivided according to the similarities and/or the 
differences between them (26).

Different definitions of ontology can be found in a non-
philosophical sense. One of the largest dictionaries of the 
(American) English language (24), provides two definitions 
of ontology: 1. a science or study of being: specifically, a 
branch of metaphysics relating to the nature and relations of 
being; a particular system according to which problems of the 
nature of being are investigated; first philosophy; 2. a theory 
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Abstract
Recent years have seen a vast amount of data generated by various biological and biomedical experiments. The storage, 
management and analysis of this data, is done by means of the modern bioinformatics applications and tools. One of the 
bioinformatics instruments used for solving these tasks, are ontologies and the apparatus they provide. Ontology as a modeling 
tool is a specification of a conceptualization meaning that an ontology is a formal description of the concepts and relationships 
that can exist for a given software system or software agent (8, 10). Anatomical (phenotypic) ontologies of various species 
nowadays typically contain from few thousands to few tens of thousands of terms and relations (which is a very small number 
compared to the count of objects and the amount of data produced by biological experiments at the molecular level, for example) 
but usually the semantics employed in them is enormous in scale. The major problem when using such ontologies is that they 
lack intelligent tools for cross-species literature searches (text mining) as well as tools aiding the design of new biological and 
biomedical experiments with other (not yet tested) species/organisms, based on available information about experiments already 
performed on certain model species/organisms.
This is where the process of merging anatomical ontologies comes into use. Using specific models and algorithms for merging 
of such ontologies is a matter of choice. In this work a novel approach for solving this task, based on two directed acyclic 
graph (DAG) models and three original algorithmic procedures is presented. Based on them, an intelligent software system for 
merging two (and possibly more) input/source anatomical ontologies into one output/target super-ontology was designed and 
implemented. This system was named AnatOM (an abbreviation from “Anatomical Ontologies Merger”).
In this work a short overview of ontologies is provided describing what ontologies are and why they are widely used as a tool 
in bioinformatics. The problem of merging anatomical ontologies of two or more different organisms is introduced and some 
effort has been put into explaining why it is important. A general outline is presented of the models and the method that have 
been developed for solving the ontologies merging problem. A high-level overview of the AnatOM program implemented by the 
authors as part of this work is also provided. 
To achieve the degree of intelligence that is needed, the AnatOM program utilizes the large amount of high-quality data 
(knowledge) available in several widely popular and generally recognized knowledge bases such as UMLS, FMA, and WordNet. 
The last one of these is a general-purpose i.e. non-specialized knowledge source. The first two are biological/biomedical ones. 
Their choice was based on the fact that they provide a very good foundation for building an intelligent system that performs 
certain comparative anatomy tasks including mapping and merging of anatomical ontologies (23).
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concerning the kinds of entities and specifically the kinds of 
abstract entities that are to be admitted to a language system.

A short but at the same time explanatory enough modern 
definition of the ontology concept was given by Grenon et al. 
(7). The definition does not pertain to computer or information 
sciences only: an ontology grasps the entities which exist within 
a given portion of the world at a given level of generality, it 
includes a taxonomy of the types of entities and relations that 
exist in that portion of the world seen from within a given 
perspective.

A slightly longer definition of the ontology concept is that 
of Gruber (8). This definition is specifically constrained within 
the context of computer science (in general) and artificial 
intelligence and knowledge representation (in particular): An 
ontology is an explicit specification of a conceptualization.  
The term is borrowed from philosophy, where an ontology is a 
systematic account of Existence. For knowledge-based systems, 
what “exists” is exactly that which can be represented. When 
the knowledge of a domain is represented in a declarative 
formalism, the set of objects that can be represented is called the 
universe of discourse.  This set of objects, and the describable 
relationships among them, are reflected in the representational 
vocabulary with which a knowledge-based program represents 
knowledge. Thus, we can describe the ontology of a program 
by defining a set of representational terms. In such an ontology, 
definitions associate the names of entities in the universe of 
discourse (e.g., classes, relations, functions, or other objects) 
with human-readable text describing what the names are meant 
to denote, and formal axioms that constrain the interpretation 
and well-formed use of these terms.

In a contemporary bioinformatics sense, an ontology can 
be considered to be composed of (i) a controlled vocabulary 
system of biological or biomedical terms, (ii) a formal 
representation of the relations which exist among these terms, 
(iii) a logical reasoning/inference system which can infer/
deduce new knowledge from the knowledge that is explicitly 
contained in (i) and (ii). Therefore, for the purposes of this 
work, (i) and (ii) are viewed as an ontology’s static part, and 
(iii) as an ontology’s dynamic part. 

Ontology elements
In bioinformatics and in computer science, ontologies are 
formal systems composed of several building blocks regardless 
of the particular formal language that is used to represent them. 
The ontology building blocks (25) are listed below divided into 
two groups based on our view about their importance.

The primary (most widely used) ontology components are:
•	 individuals – these are also called instances (or objects, 

terms, concepts);
•	 classes – sets or collections of objects where objects 

are grouped by some common feature which all objects 
falling within the class share among themselves;

•	 attributes – properties (features, characteristics) of the 
objects;

•	 relations – logical links between individuals or between 
classes describing how these individuals or classes are 
related to each other.

The secondary (less well-known, not so widely-used) 
ontology components are:

•	 function terms – structures formed by certain relations 
which can replace individual terms (objects) within 
more complex expressions;

•	 restrictions – formal statements describing what must 
hold true in order for some assertion to be considered 
as valid;

•	 rules – if-then statements (sentences) describing the 
logical inferences that can be drawn from an assertion;

•	 axioms – assertions (which may include rules) in 
a logical form, which constitute the theory that the 
ontology describes in the particular application domain 
that is being modeled;

•	 events – the changing (the process or the act of 
changing) of attributes and relations.

It is to be outlined that this categorization of the ontology 
components into two groups (primary and secondary) is a 
relative and subjective one. So it is not to be taken literally 
and accepted as the only possible one. It is based on our 
view as to which components are more/less commonly used 
when exploring ontologies in general and their applications in 
computer science and bioinformatics in particular. The primary 
components are the most common ones and they are those, 
which people come across first when they come to the field of 
ontologies. The secondary ones are more specific and not so 
widely used.

Most of the components presented above are static by 
their nature. The rules, the axioms and the events bring some 
dynamics to the ontology models. It is assumed throughout this 
paper that an ontology’s static side is all about the structure 
which is being modeled within the particular domain under 
study; its dynamic side is about reasoning, making inferences 
and deducing new facts from the already known ones.

Ontologies in bioinformatics and in artificial intelligence
Bioinformatics is sometimes also referred to as computational 
biology even though there is a difference between the two and 
many authors acknowledge that difference. Bioinformatics is 
an interdisciplinary field and is concerned with the usage of 
methods, tools and techniques from various scientific fields and 
disciplines such as mathematics, statistics, computer science, 
artificial intelligence, chemistry and biochemistry, for solving 
biological problems. These problems may exist at various 
levels of detail e.g. molecular level, tissue level, organ level, 
organism level and even at certain super-organism levels.

The recent decades have seen an explosion in the amount 
of data produced by experiments in life sciences such as 
biology and molecular biology in particular. Various academic, 
business, and non-profit organizations have developed their 
own software systems for collecting, storing, analyzing, 
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interpreting, processing and presenting that data to the end users 
– researchers, experts, lab workers (11, 16, 19). Interoperability 
and integration between these systems has been ignored for a 
long time but has recently become a necessity, as it became 
apparent that even the most powerful hardware and software 
systems cannot perform all necessary tasks on their own but 
need to cooperate and communicate with already existing 
systems, and to reuse the functionality and the data that are 
already there. This trend has also been implied by the recent 
developments in information technology (IT) where huge 
monolithic multi-functional (all-in-one) systems have been 
replaced by multiple, smaller and highly-specialized systems 
(services, agents) each of which communicates with others of 
the same kind, in order to provide the necessary functionality 
and results to its end users. These trends of transition from 
centralized to decentralized form of computing have led to 
an increased interest towards data and system integrations. 
Ontologies turn out to be a useful tool for approaching and 
solving these kinds of problems.

Another reason for putting ontologies to work in 
bioinformatics and computational biology is the need to have 
standard controlled vocabularies and to reuse them between 
different scientific organizations and workgroups. This has at 
least two important benefits. First, scientists are able to share 
uniform scientific terminology which eases the understanding 
between them and minimizes the risk of ambiguities and 
misunderstandings (20). Second, scientists are able to perform 
intelligent searches in existing scientific literature which is 
usually referred to as text mining.

For the purposes of this work, the second one of the two 
benefits noted above was of main interest. To arrive at this 
stage (performing intelligent, e.g. synonym-based, searches), 
the problem of taking two or more source ontologies as input 
and producing one target ontology as output needs to be solved 
(3, 5). This process implies merging or mapping or aligning 
the input/source ontologies. The output/target ontology that 
is produced by this process is what is denoted as the super-
ontology.

Enabling different scientific organizations and groups to 
share common structured and controlled vocabularies naturally 
leads to a shift towards artificial intelligence (AI) systems. 
These systems can benefit from this usage of ontologies just 
as humans do. Ontologies can be used as an instrument for 
enabling higher integration, easier communication, more 
efficient knowledge interchange and knowledge sharing 
between multiple AI systems and agents (9).

Ontologies are formal systems for representing and 
organizing explicit knowledge and for allowing reasoning 
(inference) of implicit knowledge (implicit is knowledge which 
is not explicitly contained/declared in the ontology model 
itself). The former is viewed as the static side of an ontology – 
this is a set of objects/classes and a set of relations which exist 
among them (both these sets are stated/declared explicitly); it 
is static as it is just a description of a structure together with 
knowledge explicitly stated/declared to be contained in that 

structure (14). The latter is viewed as the dynamic side of an 
ontology as it is about the ability to infer even more knowledge 
which is implicitly contained (in the ontology) but which is 
not explicitly stated/declared in the static part of the ontology 
model.

Ontologies have emerged from earlier, less formal 
knowledge representation systems developed for use in AI 
systems and AI agents. Almost all modern ontological systems 
are based on description logics (DLs in short) (1). Description 
logics are a family of formal, mathematical logical systems 
for representing explicit knowledge and for inferring implicit 
knowledge from the explicit knowledge that is given/known 
up-front.

Building AI systems and AI agents poses the question 
of knowledge representation and knowledge inference. 
When considering simple, limited application domains and 
developing AI systems and AI agent for them, the choice of 
a knowledge representation model is not that important as it 
is easy to come up with a consistent terminology and simple 
procedures for knowledge inference and decision making. 
When it comes to complex domains, such as, for example, 
predicting financial trends, computer-aided disease diagnosis, 
or controlling a robot in a complex environment, the choice of 
a knowledge representation model and a knowledge inference 
model become crucial. More general and more flexible forms 
of knowledge representation and knowledge inference need to 
be developed and utilized. Representing abstract/general AI 
concepts like actions, beliefs, facts, time, physical obstacles 
which occur in many real-world application domains is what 
is usually called ‘ontology engineering’ (17). This is where 
ontology models come into use – for representing explicit 
knowledge, for formally representing abstract/general 
concepts, and for inferring implicit knowledge from the 
explicit knowledge base.

Objective of this work
This work deals with anatomical ontologies as its main subject. 
For its purposes, the anatomical ontologies published by the 
OBO Foundry Project (18) were used as these are nowadays 
widely recognized and are a de facto standard in the biomedical 
domain. OBO stands as an abbreviation of Open Biomedical 
Ontologies. The OBO Foundry Project is an open collaborative 
effort to standardize the design, development and publication 
of biomedical ontologies by researchers worldwide.

Anatomical ontologies consist of anatomical/phenotypic 
concepts/terms (e.g. anatomic region, organ system, head, head 
organ, nervous system, central nervous system, brain, etc.) and 
the relations which exist among these concepts/terms (e.g. the 
brain is part of the central nervous system; the central nervous 
system is part of the nervous system; the nervous system is an 
organ system; the brain is a head organ; the head organ is part 
of the head).

Our research task involved taking two (or more) species-
specific/organism-specific anatomical source ontologies as 
input and algorithmically generating a single generalized 



3176 Biotechnol. & Biotechnol. Eq. 26/2012/4

anatomical ontology as output (a super-ontology), thus 
integrating the source ontologies into a single ontology model. 
For this purpose, the adult mouse anatomical ontology and the 
zebrafish anatomical ontology were used, as these organisms 
are widely adopted and recognized as important model 
organisms in biological lab research. The integration of the 
anatomical ontologies of two separate organisms (mouse and 
zebrafish in particular) is crucial when various intelligent text 
searching (or text mining) tasks for finding cross-organism/
cross-species synonyms need to be performed (in scientific 
literature for instance).

Materials and Methods
For solving this task, two novel models based on graph theory 
are developed and outlined here. The graph theory models 
were processed algorithmically by consulting/interrogating 
several external knowledge sources for the goal of merging 
nodes and relations from the input ontologies in a biologically 
meaningful way, and for defining nodes and relations in the 
output ontology again in a biologically meaningful way.

The formal computer-readable language used for 
representing ontologies in this work was OBO. It is one of 
the most common, standard ways of representing ontologies 
in bioinformatics even though other  ontology  representation 
languages exist and are being used (OWL, RDF and 
RDF-Schema, and others). OBO is the language (and the 
accompanying file format) defined and promoted by the 
Gene Ontology (GO) project (4, 20) and adopted by the OBO 
Foundry initiative (18).

The three external knowledge sources which were used 
in this work, and which the AnatOM program communicates 
with, are UMLS, FMA and WordNet.

The Unified Medical Language System (UMLS) is a system 
developed and maintained by the US National Library of 
Medicine (NLM). The UMLS aims to integrate and distribute 
key terminology, classification and coding standards, and 
associated resources to promote creation of more effective and 

interoperable biomedical information systems and services (2, 
21). Presently, it is one of the largest knowledge sources (if not 
the largest one) in the biomedical domain documenting several 
million biomedical concepts and the relations between them. 
Over 20 natural languages are used in UMLS of which English 
is the most widely used one. 

The Foundational Model of Anatomy (FMA) developed by 
the University of Washington is a domain-specific ontology 
that documents the anatomy of the human body. The FMA 
makes available anatomical information in symbolic (non-
graphical) form to knowledge modelers and other developers 
of applications for education, clinical medicine, electronic 
health record, biomedical research and all areas of health 
care delivery and management. Currently the FMA contains 
approximately 75,000 classes and over 120,000 terms. Over 
2.1 million relationship instances from over 168 relationship 
types link the FMA’s classes into a coherent symbolic model. 
The FMA is also one of the largest computer-based knowledge 
sources in the biomedical domain (15, 22).

WordNet is a large lexical database of the English language 
developed and maintained by the Princeton University. Of the 
three knowledge sources used in this work (UMLS, FMA, 
WordNet), it is the only general-purpose one, i.e. WordNet is 
not specialized in biology, anatomy, or biomedicine (6, 12, 13).

Ontology modeling
It is our understanding which is adopted here and underlined 
throughout this work that ontologies can be viewed as higher-
order (or upper-level) models composed of two lower-level sub-
models. The first one deals with the static side of the knowledge 
– it is about representing the explicit knowledge that is there 
(knowledge representation). The second one is about inferring 
implicit knowledge (knowledge inference). The first (static) part 
is about graph theory; the second (dynamic) part is about logic 
and logical inference. The static graph theory model was of main 
interest for the purposes of this work, as it provides the basis 
for solving the problem or merging two (or more) anatomical 
ontologies into one single anatomical super-ontology.

TABLE 1
Semantic relations – definitions and examples

Relation Definition Examples

Holonym ‘X’ is a holonym of ‘Y’ if
Ys are parts of (members of) Xs

‘forelimb’ is holonym of ‘arm’, of ‘elbow’ and of ‘hand’; 
‘heart’ is a holonym of ‘heart atrium’, ‘heart endocardium’, 

‘myocardium layer’, ‘heart septum’

Meronym ‘X’ is a meronym of ‘Y’
if Xs are parts of (members of) Ys

‘arm’, ‘elbow’, ‘hand’ are meronyms of ‘forelimb’; ‘heart 
atrium’, ‘heart endocardium’, ‘myocardium layer’, ‘heart 

septum’ are meronyms of ‘heart’

Hyponym ‘X’ is hyponym of ‘Y’ if all Xs are also Ys
but X represents a more specific concept than Y

aorta, arteriole, artery are hyponyms of ‘arterial blood vessel’; 
‘brain’, ‘eye’, ‘ear’ are hyponyms of ‘head organ’

Hypernym ‘X’ is hypernym of ‘Y’ if all Ys are also Xs
but X represents a more general concept than Y

‘arterial blood vessel’ is a hypernym of aorta, arteriole, artery; 
‘head organ’ is a hypernym of ‘brain’, ‘eye’, ‘ear’
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Static side. Graphs
Graph theory is a branch of discrete mathematics which 
studies graph models (graphs) and their properties. Graphs 
are mathematical network-like models composed of two sets 
– V (set of vertices/nodes) and E (set of edges/arcs). The set V 
contains elements which are called vertices (or nodes). The set 
E ⊆ V × V, contains elements called edges (or arcs), each edge 
connecting two vertices from the set V. Apparently E defines 
a binary relation on the set V. The edges may be undirected 
(symmetric) or directed (asymmetric) depending on whether 
the relation E is symmetric or not. When edges are directed the 
graph is called a directed graph; respectively when edges are 
undirected the graph is called an undirected graph. Directed 
edges (also called arcs or arrows) make a distinction between 
their start (first) node and their end (last) node; undirected 
edges do not make that distinction between start and end 
vertices (both ends may be viewed as either start-point or end-
point of the undirected edge). Each edge which has the node v 
as its start, is called an outgoing edge with respect to v; each 
edge which has the node v as its end is called an incoming edge 
with respect to v. A path in a graph is a sequence of edges e1, 
e2,…, en , such that the end node of each edge ek coincides with 
the start node of the next edge ek+1. A cycle is a path in which 
the end node of the last edge en coincides with the start node of 
the first edge e1. A directed acyclic graph (DAG) is a directed 
graph with the special property that no sequence of edges forms 
a cycle. A tree is a DAG with the additional property that there 
is at most one incoming edge associated with each node. In a 
way a DAG can be viewed as generalization of a tree. DAG 
is a well-known and widely applicable type of graph in graph 
theory and its applications.

Graph theory and graph theoretical models have long 
history in being used for knowledge representation and 
modeling in AI systems so it is natural that their apparatus 
was employed for the purposes of this work. The static side 
of an ontology is, by its nature, equivalent to a DAG structure 
(as defined above), in which nodes/vertices represent objects/
terms/concepts (from the ontology), and edges represent 
relations between these objects/terms/concepts. Therefore 
throughout this text, DAGs have been used for modeling 
anatomical ontologies of different species/organisms and for 
solving the particular problem of mapping/merging them.

An edge from the static DAG model of an ontology 
represents a relation between the two nodes of the DAG that 
it connects. These relations are typically used in linguistics: 
synonyms, hypernyms, hyponyms, meronyms, holonyms. 
Table 1 summarizes these semantic relations and provides 
examples of them.

In Fig. 1 an excerpt is shown from the DAG of the adult 
mouse anatomical ontology as published and maintained by the 
OBO Foundry Project. The DAG contains nodes (ovals) which 
represent terms/concepts from the adult mouse anatomical 
ontology as well as directed edges which represent relations 
(is_a, part_of) that exist among them.

mouse anatomical 
entity

anatomical 
structure

organ

postnatal 
mouse

grey matter

spinal cord grey 
matter

spinal cord

back organ

central nervous 
system

nervous 
system

organ system

Fig. 1. An excerpt from the graph model (the DAG) of the mouse anatomy 
ontology which illustrates several anatomical terms and the relations which 
exist among them. Terms/concepts (ovals); ‘part-of’ relations (solid arrows); 
‘is-a’ relations (dotted arrows); arrow heads point from the child term to the 
parent term.

Dynamic side. Reasoning and inference
For the purposes of the method presented here, it is not 
necessary to go into much detail about the dynamic part of 
an ontology. Therefore it is mentioned here only briefly. The 
dynamic side of an ontology is based on a formal logical 
system for inferring new (implicitly contained) knowledge 
from the already existing (explicitly stated) knowledge. There 
are several widely used logical systems in AI and the most 
widely-known and well-studied ones are propositional logic/
calculus and first-order predicate logic. Ontology engineering 
and ontology knowledge modeling are based on another set 
of formal logical systems known as description logics (DLs).

Description logics are systems which are more general 
(wider, more expressive) than propositional logic but less 
general (narrower, less expressive) than first order predicate 
logic. When it comes to reasoning and knowledge inference, 
the questions of decidability of the subsumption problem (Does 
A belong to B?) and the instance problem (Is A an instance 
of B?), in a given logical system, become very important. It 
has been proven that in the worst-case (widest) sense these 
problems are intractable for description logics as they are 
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non-deterministic polynomial (NP) complete. Still, it has 
been shown that the intractability of the two problems in their 
most general sense does not prevent DLs from being useful 
in practice for building ontologies and for applying reasoning 
procedures on them. That practical usefulness is achieved by 
narrowing the expressiveness of the DL languages and also by 
applying various optimization techniques when implementing 
reasoning in DL systems.

Algorithmic solution
The method outlined here for generating an output (target) 
super-ontology from two input (source) ontologies, is 
composed of two main phases: 1) mapping of the two input 
ontologies onto each other; 2) merging the two input ontologies 
into a super-ontology. 

The mapping phase consists of establishing the semantic 
links (synonymy, parent-child) between the two anatomical 
ontologies and between their nodes/terms in particular. It does 
that by applying three algorithmic procedures of different 
complexity which are listed here from most straightforward 
to most intelligent: 1) syntactical/direct matching of nodes; 2) 
matching of nodes based on the knowledge available in the 
external knowledge sources; 3) matching (parent) nodes of the 
two input ontologies based on patterns of matches (patterns of 
cross-ontology connectivity) already discovered in 1) and 2) 
between the children of these (parent) nodes.

M14

M12
M13

M11

M15

M10

M6 M8M7

M4 M5

M1

M9

Z1

Z3 Z4 Z5

Z7 Z8

Z9 Z10 Z11 Z12

Z13 Z14

Z16Z15

M2 Z2

M3

Z6

DAG 1 (Mouse 
Anatomy Ontology)

DAG 2 (Zebrafish 
Anatomy Ontology)

Ontology 
Boundary

Fig. 2. Model #1 – the two ontologies mapped onto/linked with each other. 
Mouse (Mk) and zebrafish (Zk) anatomy terms; virtual border between the two 
source ontologies being mapped (vertical solid line); ‘part-of’ relations within 
the source ontologies (inner-ontology solid lines); ‘is-a’ relations within each 
of the source ontologies (dashed inner-ontology lines); ‘synonymy’ relations 
between the nodes of the source ontologies (cross-ontology solid lines, and 
so are symmetrical/bidirectional); ‘parent-child’ relations between the nodes 
of the source ontologies (cross-ontology dashed lines, and therefore are 
asymmetrical/unidirectional); all unidirectional links (arrows) point from 
child term to parent term.

The mapping phase results in building a semantically rich 
initial model – Model #1 which is denoted here as ‘the two 
ontologies mapped onto each other’. This model contains 
all cross-ontology links/connections which are discovered 
by the three algorithmic procedures outlined above. The 

cross-ontology links established here are of the following 
types: ‘is_a’ parent-child links, ‘part_of’ parent-child links, 
‘synonymy’ links (Fig. 2).

The merging phase consists of introducing/defining new 
terms/concepts (generalized concepts or super-concepts) from 
the input ones and drawing the hierarchical edges (‘part-of’, 
‘is-a’, etc.) between the newly defined super-concepts. This 
is done based on the inner-ontology links given and the cross-
ontology links found. The main result of the merging phase 
is what is called Model #2 or ‘the super-ontology’. Having 
the super-ontology generated implies that an important side-
product – a cross-species thesaurus, is also generated. The 
thesaurus semantically translates terms/concepts from source 
anatomy #1 (the mouse anatomical ontology) to terms/
concepts of source anatomy #2 (the zebrafish anatomical 
ontology) (Fig. 3).

{M1, Z1}
{M3, Z3}

{M10, Z10}

{M8}

{Z5} {M6, Z6}

{M14}{M12, Z12} {M13, Z13}

{M9, Z9}

{M11, Z11}

{M7, Z7}

{Z15}

{M4, Z4}

{M2, Z2}

The super-ontology model

Fig. 3. Model #2 – the super-ontology – the two ontologies merged. Super-
ontology terms are presented: some of them originate from mouse e.g. {M8}, 
some, from zebrafish, e.g. {Z5}, and some, from both source ontologies, e.g. 
the node {M7, Z7}; ‘part-of’ relations within the super ontology (solid lines); 
‘is-a’ relations within the super-ontology (dashed lines); all links point from 
child term to parent term.

Results and Discussion
The models and the method outlined above were implemented 
in a software program named AnatOM. It is a platform-
independent program implemented in Python which uses three 
separate MySQL databases representing the three external 
knowledge sources which AnatOM communicates with 
(UMLS, FMA, WordNet). AnatOM is a typical GUI-based 
program and not a command line tool. It was tested to work 
under both Linux and Windows. In Fig. 4 an overview of the 
AnatOM’s program/process flow is presented.

The user is first given the option to choose the two input 
anatomical ontologies. The program then loads and parses 
them thus generating two DAGs which are stored in memory. 
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The program applies three algorithmic procedures on the two 
DAGs to come up with a mapping of the two input ontologies 
onto each other, and to finally merge them into a single super-
ontology (a single DAG).

Load two anatomical
ontology files 

(e.g. mouse and zebra-fish)

Parse input ontologies and generate
two graphs in memory

UMLS Knowledge 
Base (DB)

FMA Knowledge 
Base (DB)

Consult the external knowledge
sources (UMLS, FMA, WordNet)

Apply DM, SMP, CMP procedures

START1

Present predicted synonyms
to curator

Link the in-memory graphs representing the 
two ontologies by semantic links
(part_of /  is_a parent-child links, 

synonymy links)

END

2

3

4

5

6
7

Save AnatOM’s predictions and 
curator’s decisions.

Generate super-ontology. 
Export super-ontology.

AnatOM – Program/ Process Flow

WordNet Knowledge 
Base (DB)

10

11

Response A

Request B

Response B

Request A

Request C

Response C

Curate predictions
(accept, reject, postpone) (9)

Review synonymy 
predictions (8)

    Curator

Fig. 4. An overview of AnatOM’s process/program flow.

The first procedure applied is what is called textual, or 
syntactical, or direct matching (DM), procedure. This procedure 
looks for plain text matches between terms from the two input 
ontologies in order to draw cross-ontology links (synonymy, is-a 
parent-child, part-of parent-child) between those terms. To give 
an example, if the first input ontology contains the term ‘brain’, 
and the second input ontology also contains the term ‘brain’, it 
is natural to predict that these two terms would be synonyms 
(without even communicating with any external knowledge 
sources). Such direct matches are assigned scores (as are all 
predictions made by the AnatOM program) and are marked as 
originating from DM and not from any of the two procedures 
which are described next. Direct matches are assigned a score 
and this score is a constant/property which is configurable in 
AnatOM. The direct matches though, are pretty rare and the 
program cannot rely solely on them in order to make a complete 
and accurate mapping between the two input ontologies. For 
that to be achieved some more intelligence is needed. 

The second procedure applied is the source matching 
predictions (SMP) procedure. At this point, the program 

communicates with the three external knowledge sources 
which contain biomedical terms and interrogates them for 
synonyms, parents (is-a/part-of), and children (also is-a/part-
of) of the terms from the two input ontologies. Then a set of 
basic rules is applied which allow AnatOM to map/link certain 
terms from the two input ontologies. An example for such a 
rule is as follows: when term A from the first input ontology is 
found to be synonym of term X from the knowledge source S 
(S is either UMLS or FMA or WordNet), and if term B from 
the second input ontology is also found to be synonym of term 
X from the knowledge source S, then the program marks A 
and B as synonyms predicted by SMP through the knowledge 
source S. This prediction is then assigned a score equal to 
the reliability score of the knowledge source S (23) through 
which the SMP prediction was made. The reliability scores 
of the three knowledge sources are constants configurable in 
AnatOM.

The intelligence of AnatOM and its ability to map the 
two input ontologies onto each other, come mostly from the 
fact that it communicates with the three external knowledge 
sources UMLS, FMA, and WordNet. These knowledge sources 
are represented for the program’s purposes in the form of three 
MySQL relational databases. AnatOM’s communication with 
them is shown in Fig. 4 as Requests/Responses (A), (B), and 
(C). These are plain SQL requests/queries and responses/
results. In fact, the (A), (B), and (C) are series/sessions of 
SQL requests/responses. The results returned by these SQL 
queries allow the AnatOM program to build cross-ontology 
links (synonymy links, is-a parent-child links, part-of parent-
child links). The communication with the external knowledge 
sources is at the heart of the SMP procedure and (in a way) 
also of the CMP procedure which is described next and which 
uses the results obtained through DM and SMP as its input. 
Once the SMP procedure is complete, the two input ontology 
DAGs are practically so heavily linked together that they can 
be viewed (and are viewed) as one single graph.

The third, the so-called child matching predictions (CMP), 
procedure is applied last. It uses the cross-ontology links 
which DM and SMP have generated and their scores but it 
assumes that there might be some omissions in the links found 
so far. So CMP tries to find even more cross-ontology links 
(synonymy, parent-child), which are not discoverable (and 
were not discovered) either through DM or through SMP. 
To do so, it scans the single DAG graph that resulted from 
applying DM and SMP, and looks for certain patterns of 
cross-ontology connectivity between pairs of inner-ontology 
parents/children. The CMP procedure looks for parents (from 
both ontologies) which are not linked yet (by DM or SMP) but 
whose children are (relatively) heavily linked. Then it draws 
conclusions (makes predictions) about a possible link (CMP-
predicted link) between the parent terms based on how their 
children are cross-ontologically linked by DM and/or by SMP. 
Each CMP link is also assigned a score which is a function of 
the scores of all the DM and SMP links involved in the pattern 
detected and considered when making the CMP prediction.
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At the final stages of the process flow, the predictions 
made by DM, SMP, CMP are presented to a curator (a 
biologist, an anatomical domain expert) who can make the 
necessary adjustments/amendments/decisions by either 
rejecting or accepting the predictions that were auto-generated 
by AnatOM. Finally, the program allows for saving all auto-
generated predictions as well as all decisions made on them by 
the curator. Based on all this knowledge (the auto-generated 
predictions and the curator’s decisions on them), the two 
ontologies are merged into a single one and a super-ontology 
is generated (Fig. 4). Finally, AnatOM supports exporting the 
super-ontology to the same file format (OBO) in which the two 
input ontologies were initially passed in as input.

The mouse anatomical ontology contains about 3000 
anatomical terms and the zebrafish anatomical ontology 
contains about 2700 anatomical terms (these figures are valid 
as of February 2012). With the method presented here and 
implemented in AnatOM, about 700 predicted synonyms were 
identified. Extensive review and curation of these synonymy 
links by a domain expert curator (the AnatOM’s user) is still 
to be performed, but the results are biologically adequate from 
non-expert perspective and thus quite encouraging.

The main goal of applying the method has been not to miss 
any biologically meaningful cross-ontology synonymy and 
parent-child links rather than to minimize the cross-ontology 
links which were predicted in error. Further fine-tuning of 
the algorithm and the scoring scheme are easily possible as 
AnatOM is flexible-enough and all initial constants which might 
influence the outcome of the algorithm are easily configurable.

The current results showed that mapping and merging the 
anatomical ontologies of two distinct organisms/species can 
be greatly simplified (semi-automated) with the use of an 
intelligent program such as AnatOM by utilizing the extensive 
structured external knowledge which has been collected, 
extended, curated, and improved by human domain experts 
over several years.

The AnatOM program uses discrete graph theoretical 
models, and a probability-like scoring scheme. Three 
algorithms/procedures act upon these models – DM, SMP 
and CMP, in order to predict semantic links (synonymy, is-a 
parent-child, part-of parent-child) between the two input 
anatomical ontologies. Going forward, other models including 
non-discrete (continuous) e.g. statistical models, could 
also be utilized in order to provide further improvement of 
the predictions that are made and thus to reduce the human 
intervention (the curator’s work) that is necessary after the 
auto-prediction procedures have completed execution.

Conclusions 
Merging anatomical ontologies from different species is 
important to biologists trying to perform cross-species textual 
searches in the scientific literature available. That is usually 
done in order to find cross-species similarity patterns of 
anatomical nature. In this work, a method was proposed which 
semi-automates the process of merging two given anatomical 

ontologies. Manual curation is still a necessity but the amount 
of work that is left for the curator is greatly reduced through the 
use of the AnatOM program. The program was developed as 
part of the current work and contains the most useful modules 
for solving the problem at hand.

A communication module is available for querying external 
structured knowledge sources like UMLS, FMA, WordNet. 
Additional knowledge sources, e.g. the Gene Ontology (GO), 
might be added with some minimal effort if that turns out 
necessary.

A visualization module is in place allowing the user to 
easily navigate through the mapped ontologies and the super-
ontology as well as to visualize the links to the two source 
ontologies and to view the scores of the predicted synonymy 
and parent-child links. 

What could be implemented next, is a searching (text 
mining) module providing ability to perform intelligent text 
searches or text mining into various external unstructured 
(natural language based) knowledge sources (scientific 
literature, the web) by utilizing the richness of the here 
generated super-ontology model. On the other hand, such a 
module could be viewed as a separate program which uses 
AnatOM, calls into it and gets results back (something that is 
usually denoted as pipelining).

Going forward, the improved accuracy of results from 
cross-species text searches (text mining) of anatomical terms 
in non-structured, natural language based information could 
be the main benefit brought by AnatOM. The AnatOM project 
long-term goal is to provide researchers with the necessary 
text-mining tools for finding similar scientific results (to their 
own) which are already published by others but are related to 
different organisms. Being able to perform such text mining 
tasks could help researchers in extrapolating the results 
obtained by their own experiments (to other model organisms), 
or help them design new experiments on other (yet untested) 
model organisms.

With respect to scalability, support for more than two 
input ontologies could be added to AnatOM in a relatively 
straightforward way so that more than two species could be 
merged into the generated super-ontology. This is possible 
due to the fact that AnatOM is able to export the generated 
super-ontology to OBO which is the same format as the one 
of the two input ontologies. Therefore the program could be 
run multiple times and each time a new anatomical species-
specific ontology could be merged into the super-ontology 
produced by the previous program run.
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