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ABSTRACT 
For closely related sequences there is a single optimal alignment which provides an accurate measure of 
similarity, structure, function and evolutionary history. However, with increasing evolutionary distances 
between nucleotide sequences the single optimal alignment method is replaced by an ensemble of alignments of 
almost equal quality and ensemble of different self-folded conformations. 
Recurring difficulties associated with diverged sequence data include alternative alignment possibilities of 
insertions and deletions, region of length variations in which homology assessment is questionable or 
impossible, occurrence of localized excessive mutations to the point of saturation and lost of phylogenetic 
signals. Therefore, for diverged sequences optimizing similarity will not necessarily improve structure, function 
and evolutionary history assessments. 
Here our aim is to present an overview of the methods involved in sequence analysis which are critical for 
current theoretical and application development. However, we do not follow historical events. For sequence 
comparison we focus on those methods that are based on exhaustive schemes, which are classically formulated 
as dynamic programming algorithms. They consist either of optimization schemes which find the best alignment 
for a given model, or of probabilistic schemes based on partition functions - in which all alignments, with their 
respective weights, are evaluated. 

Introduction 
RNA/DNA and protein sequence data unite all 
organisms into the fold of comparative analyses 
allowing reconstruction of their evolutionary 
histories even they differ enormously in 
morphology and lifestyle. But while nucleotide and 
protein sequences are universal their tempo and 
mode of evolution are not. 

Thus, mutation rates seem to vary both among 
and within genomes, being affected by many 
factors such as chromosomal position (16), G+C 
content (19), nearest neighbor bases (4), and 
different efficiency of the repair systems between 
the lagging and the leading DNA strands during 
replication and transcription (17). 

On the other hand, sequences of biological 
macromolecules in various species, which share a 
common evolutionary ancestry, especially those 
with conserved catalytic activity, presumably fold 
into the same structure. Thus, for closely related 
species, optimizing similarity based on observed 
sequence variation can be used to obtain a single 
optimal alignment, which provides an accurate 
measure of similarity, structure, function and 
evolutionary history. 

However, with increasing evolutionary 
distances between nucleotide sequences of distantly 
related species, the single optimal alignment 
method is replaced by an ensemble of alignments of 
almost equal quality and ensemble of different self-
folded conformations. 

Although the search for globally optimal 
similarity alignment is an ongoing process, the 

sequence alignment method diverged in its 
alignment objectives in a few major directions: 1) 
structure predictions (6); 2) database searching (3); 
3) sequence comparison (8) and 4) phylogenetics 
(9). 

The goal of structure prediction is to deduce the 
2D and 3D structure of the gene product from a 
given gene sequence. The goal of alignment for 
database searching is to maximize the distinction 
between the homologous and non-homologous 
sequences. The major role of alignment for 
sequence comparison is to find out conserved 
sequence features (for example, functional sites). 
Finally, the goal of alignment for phylogeny is to 
align residues only if they have descended from 
common ancestral residue. 

It is now evident that RNA/DNA and protein 
sequence evolution is far more complex than 
previously supposed and cannot be treated as an 
arbitrary string of characters, but is a 
macromolecule with specific biological constraints. 
The molecular structure and function may influence 
sequence evolution by generating sequence 
conservation or mutational hot spots of substitution 
or insertion/deletion events. Therefore, sequence 
alignment should model molecular processes that 
have led to the observed sequence variation rather 
than similarity-based patterns. 
 
Nucleotide substitution models 
We call two biological sequences homologous if 
they are evolutionarily similar, i.e., were derived 
from a common ancestor. For any two sequences 
we want to be able to compare them and to see 
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whether they are homologous or not and to measure 
the extent of this homology. But first we need a 
model for nucleotide and amino acid substitutions 
which cause the sequence change in the course of 
time. 

Substitutions are usually modeled as a random 
event. The simplest approach to account for a 
random mutation at a particular site along the 
sequence is based on the application of the Poisson 
process in probability theory. This approach was 
used by Zuckerkandl and Pauling (20) in predicting 
the evolutionary change of hemoglobin and 
cytochrome c. Zuckerkandl and Pauling proposed 
the theory of a molecular clock, that is, that the rate 
of molecular evolution is approximately constant 
over time for all the proteins in all lineages (Fig. 1). 

 
Fig. 1. The evolutionary process operates independently 
on each site of the protein sequences. The arrows 
represent substitution events during time. On each site of 
the sequences all nucleotide substitutions occur at an 
equal rate, and when a nucleotide is substituted, any one 
of the other nucleotides is equally likely to be its 
replacement 

According to this theory, any time of 
divergence between genes, proteins, or lineages can 
be dated simply by measuring the number of 
changes between sequences. Here we will shortly 
follow their considerations. Let 𝜆 be the rate 
(probability) of amino acid substitution per year at a 
particular amino acid site and assume that it 
remains constant for the entire evolutionary period. 
Then the mean number of amino acid substitutions 
at this site during a period of 𝑡 years is 𝜆𝑡, and the 
probability of occurrence of 𝑟 amino acid 
substitutions is given by 𝑃𝑟(𝑡) = 𝑒−𝜆𝑡(𝜆𝑡)𝑟/𝑟!. 

Since the probability that amino acid 
substitution does not occur at a particular site 
during 𝑡 years is 𝑒−𝜆𝑡, the probability that neither of 
the homologous sites of the two sequences from a 
pair of species undergoes substitution is 𝑒−2𝜆𝑡. If 𝜆 
is the same for all amino acid sites, the expected 

number of identical amino acids 𝑛𝑖 between the two 
sequences is:   𝑛𝑖 = 𝑛𝑒−2𝜆𝑡 

Therefore, the simplest approach to measure 
the divergence between two closely related strands 
�1 ≫ 𝑛−𝑛𝑖

𝑛
� of aligned sequences is to count the 

number of sites where they differ (𝑛 − 𝑛𝑖). Thus, 
evolutionary time of divergence 𝑇 = 2𝜆𝑡 can be 
estimated from: 
𝑇 = 2𝜆𝑡 = −𝑙𝑜𝑔(1 − 𝑝) = −𝑙𝑛 �1 − 𝑛−𝑛𝑖

𝑛
�~ 𝑛−𝑛𝑖

𝑛
  

The quantity 𝑝 = 𝑛−𝑛𝑖
𝑛

  is called 𝑝-distance. 
Unfortunately, if the rate of substitution is high the 
𝑝-distance is generally not very informative with 
regard to the number of substitutions that actually 
occurred. This is due to the fact that the formula 
does not include the possibility that two or more 
mutations can take place consecutively at the same 
site and the case of a back-mutation. Therefore, the 
𝑝-distance is reasonable only for closely related 
sequence. 

It is difficult to implement, in a model that aims 
to be general, all the different mutation rules and 
patterns that we detect in the genetic material 
belonging to different species. Therefore, we will 
continue our discussion about substitution models 
with a description of an assumption they all share, 
the Markov property. 

The approach outlined in the Poisson process 
can be generalized to a so-called Markov process 
(8). Consider a stochastic model for RNA/DNA or 
amino acid sequence evolution. We assume 
independence of evolution at different sequence 
sites and thus can consider sites one by one. At any 
single site, the model works with probabilities 
𝑃𝑖𝑗(𝑡) that base 𝑖 will have changed to base 𝑗 after a 
time 𝑡. The subscripts 𝑖 and 𝑗 take the values 1,...,4 
to represent the nucleotides 𝐴,𝐶,𝐺, and 𝑇(𝑈) for 
RNA/DNA sequences and 1,...,20 for amino acid 
sequences. 

The Markov process uses a 𝑄 matrix that 
specifies the relative rates of change of each 
nucleotide or amino acid along the sequence. In the 
case of RNA/DNA sequences rows and columns of 
the 𝑄 matrix follow the order 𝐴,𝐶,𝐺, and 𝑇(𝑈), so 
that, for example, the third term of the second row 
is the instantaneous rate of change from nucleotide 
𝐶 to nucleotide 𝐺. The most general independent 
site evolution rate matrix has twelve different 
parameters as shown in Fig. 2: 
 

 
Fig. 2. Site evolution rate matrix 𝑄 for nucleotides. Each site in the RNA/DNA sequence is treated as a random variable with a discrete 
number 𝑛 of possible states. For nucleotides there are four states (𝑛 = 4) which correspond to the four nucleotide bases 𝐴,𝐶,𝐺, and 𝑇(𝑈). The 
components of the rate matrix 𝑄 correspond to the rate of replacement of one nucleotide by another. In other words, each non-diagonal entry 
in the matrix represents the flow from nucleotide 𝑖 to 𝑗, while the diagonal elements are chosen in order to make the sum of each row equal to 
zero since they represent the total flow that leaves nucleotide 𝑖 
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The stochastic process for substitution events 
can be derived from first principles such as detailed 
balance and the Chapman-Kolmogorov equations 
(5). To model the substitution process on the 
RNA/DNA level for example it is commonly 
assumed that a replacement of one nucleotide by 
another occurs randomly and independently, and 
that nucleotide frequencies 𝜋𝑖 in the data do not 
change over time and from sequence to sequence in 
an alignment. In other words, we can say that the 
dynamical properties of the stochastic substitution 
process do not vary in time and therefore, 𝜋𝑖 is the 
equilibrium distribution that the stochastic 
substitution process reaches asymptotically. The 
equilibrium distribution has the property of being a 
fixed point of the dynamic stochastic process. It can 
thus be obtained by solving the eigenvalue 
problems: 

𝜋𝑗 = ∑ 𝑃𝑗𝑘(𝑡)𝑘 𝜋𝑘    or    0 = ∑ 𝑄𝑗𝑘𝑘 𝜋𝑘 
 

The transition probabilities can be represented 
in the form of transition probability matrix 𝑃(𝑡). 
It’s components 𝑃𝑖𝑗(𝑡) satisfy the conditions: 

∑ 𝑃𝑖𝑗(𝑡) = 1𝑗  and 𝑃𝑖𝑗(𝑡) > 0 for 𝑡 > 0 
 

The probability matrix 𝑃(𝑡) also satisfies the 
Chapman-Kolmogorov equation: 

𝑃(𝑡 + 𝑠) = 𝑃(𝑡) 𝑃(𝑠) 
 
and the initial conditions 𝑃𝑖𝑗(0) = 1, for 𝑖 = 𝑗 and 
𝑃𝑖𝑗(0) = 0 for 𝑖 ≠ 𝑗. It is also often assumed that 
the substitution process is reversible: 

𝜋𝑖𝑃𝑖𝑗(𝑡) = 𝜋𝑗𝑃𝑗𝑖(𝑡) and 𝑄𝑖𝑗 = 𝑅𝑖𝑗𝜋𝑗  for 
𝑖 ≠ 𝑗, where 𝑅𝑖𝑗 = 𝑅𝑗𝑖 is a symmetric matrix of rate 
parameters with vanishing diagonal elements 
𝑅𝑖𝑖 = 0. Any model in use today follow from a 
particular choice of nucleotide substitution in the 
framework of a reversible rate matrix by specifying 
explicit values for the matrix 𝑅 and for the 
frequencies 𝜋𝑖. 

The transition rate matrix Q is a first order 
approximation for the Markov process. From it we 
can derive the basic equation that describes the 
dynamic of a Markov process Thus, for small 𝑡 
keeping only the linear terms the transition 
probability matrix 𝑃(𝑡) can be represented in 
Taylor expansion in the form: 
𝑃(𝑡) = 𝑃(0) +  𝑡𝑄    or    𝑄 = lim𝑡→0

𝑃(𝑡)−𝐼
𝑡

 
 
where, 𝐼 is the identity matrix. This equation 
provides an infinitesimal description of the 
substitution process. From the Chapman-
Kolmogorov equation we get the forward and 
backward differential equations: 
 
𝑑
𝑑𝑡
𝑃(𝑡) = lim𝑡→0

𝑃(𝑡+𝑑𝑡)−𝑃(𝑡)
𝑡

= lim
𝑡→0

𝑃(𝑡)−𝐼
𝑡

𝑃(𝑡) = 𝑄𝑃(𝑡)= 𝑃(𝑡)𝑄 

 

The solution of these equations, taking into 
account the initial condition is: 

𝑃(𝑡) = exp(𝑡𝑄) = �𝑄𝑛
𝑡𝑛

𝑛!

∞

𝑛

 

 
Now we can compare the results for 

evolutionary divergence between two sequences in 
the Markov process and the Poisson process. The 
total number of substitutions per unit time, i.e. the 
total rate µ is µ = −∑ 𝜋𝑖𝑄𝑖𝑖𝑖  therefore, the number 
of substitutions during time 𝑡 is 𝑇 = 𝑡µ =
−𝑡 ∑ 𝜋𝑖𝑄𝑖𝑖𝑖 . The probability that a substitution is 
observed after time 𝑡 is 𝑝 = 1 − ∑ 𝜋𝑖𝑃𝑖𝑖(𝑡)𝑖 . 

The simplest case of Markov process is the 
Jukes-Cantor model (8). In this model we have the 
following assumptions: First, each nucleotide 
position in the sequence evolves independently 
from all others; Second, transition probabilities are 
all equal to the same value. Each nucleotide is 
equally likely to turn into each other nucleotide. 
Therefore, for the Jukes-Cantor model we have: 
 

 
𝑃𝑖𝑖(𝑡) =

1
4

+
3
4
𝑒𝑥𝑝(−4µ𝑡) 

𝑃𝑖𝑗(𝑡) =
1
4
−

1
4
𝑒𝑥𝑝(−4µ𝑡) 

Thus, for two sequences that split 𝑡 time units 
ago we have 𝑝 = 3

4
�1 − 𝑒𝑥𝑝(−8µ𝑡)�. Finally, for 

the evolutionary time of divergence or the genetic 
distance between two sequences we have: 
 
𝑇 = 2(3µ𝑡) = − 3

4
𝑙𝑜𝑔 �1 − 4

3
𝑝� Jukes-Cantor 

model 
 
𝑇 = 2𝜆𝑡 = −𝑙𝑜𝑔(1 − 𝑝) Poisson model 
 

The theory of Markov processes provides us 
with a powerful formalism to describe the evolution 
in time of a single genomic sequence. However, we 
have no direct observations of how species or 
genomes evolve. What we have are instead sets of 
genomic sequences of different present day species. 

In the past, species evolution and relationships 
was inferred by examining fossil records and 
morphological characters. In the 1960’s, when 
molecular techniques were introduced to the field, 
the evolutions of the organisms’ macro-molecules 
were used to reconstruct their evolutionary history 
(14). This approach is based on the assumption that 
sequences from different species have descended 
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from some ancestral gene in a common ancestral 
species. Thus, divergence between sequences is a 
result of speciation. These genes are essentially the 
same and are called orthologues. For some 
sequences the assumption may not hold because of 
gene duplication, another mode of evolution. 

Such relationship between species is called 
phylogeny (8, 9). The simplest approach which can 
translate mathematically the concepts of common 
descent is to assume that the evolution of species or 
genomes can be presented as a Markov process on a 
tree like structure called phylogenetic tree (Fig. 3). 
 

 
Fig. 3. An example of phylogenetic Markov process 
The tree represents 4 present day species, and 3 extinct 
ones, the common ancestors. Along its branches there are 
6 different Markov processes representing the sequence 
evolutionary dynamics 
 

Phylogenetic trees are often used to present the 
history of molecules (14). The root of the tree is 
regarded as the common ancestor of all the 
sequences. Internal nodes in the tree represent 
divergence points. The length of each edge of the 
tree represents the amount of evolutionary 
divergence between sequences. These lengths do 
not necessarily correspond to evolutionary time 
periods, because sequences evolve at different rates 
in different organisms. 

If the exact amount of sequence 
divergence between all pairs of sequences from a 
set of 𝑛 sequences is known, the genetic distance 
between the sequences provides a basis to infer the 
evolutionary tree relating the sequences (8, 9). 
 
Sequence Comparison 
Before the similarity or the genetic distance of two 
sequences can be evaluated, one typically begins by 
finding a plausible alignment between them. A 
sequence alignment is simply an array where each 
row corresponds to one of the sequences and where 
those bases which are assumed to be homologous to 
each other stand in the same column. We get such 
an alignment by inserting special characters �"– "� 
called gaps which describe the insertion and 
deletion events. In the case that our alignment 
covers the entire sequences we speak of a global 

alignment. If we are only making assumptions 
about the relatedness of some parts of the sequences 
we call it local alignment. An alignment which only 
has two rows is called a pairwise alignment. If it 
has more than two rows we call it a multiple 
alignment (Fig. 4). 
 

 
Fig. 4. Pairwise global 𝒜global and local 𝒜local alignments 
 

For example, in the 𝒜global alignment in Fig. 4 
the two sequences are identical in the third, fifth, 
seventh, and ninth columns – they are the matches. 
There is a mismatch in the fourth column, first and 
eighth columns are deletions, and second and sixth 
columns are insertions. 

The concept of an alignment is crucial (15). In 
the case of biological sequence comparison we 
want a biologically relevant alignment. This can be 
achieved by using some essential molecular 
evolution assumptions combined with probabilistic 
techniques (8). An alignment should represent a 
specific hypothesis about the evolution of the 
sequences and its purpose is to find the alignment 
which maximizes the probability of two sequences 
having evolved from a common ancestor as 
opposed to being just random sequences. We do 
this by having models that assign a probability to 
the alignment in each of the two cases and then 
consider the ratio of the two probabilities. 

Consider a pair of sequences A and B, of 
lengths 𝑁 and 𝑀, respectively. Let 𝐴𝑖 be the 𝑖th 
symbol of A and 𝐵𝑗  be the 𝑗th symbol of B. These 
symbols will come from some alphabet 𝒜. In the 
case of DNA 𝒜 ={A, T, G, C} and in the case of 
proteins the twenty amino acids. Given a pair of 
aligned sequences, we want to assign a score to the 
alignment that gives a measure of the relative 
likelihood that the sequences are related as opposed 
to being unrelated (Fig. 5). 

Let (as shown in Fig. 5) 𝑝𝐴𝑖𝐵𝑗  be the 
probability that the nucleotides 𝐴𝑖 and 𝐵𝑗  have each 
independently derived from the same original 
residue in their common ancestor, while 𝑝𝐴𝑖 and 𝑝𝐵𝑗  
are the probabilities of occurrence of 𝐴𝑖 and 𝐵𝑗  in 
their sequences if we consider them as random. We 
want the score for aligning nucleotides 𝐴𝑖 and 𝐵𝑗  
𝑠�𝐴𝑖,𝐵𝑗� to be the log likelihood ratio of nucleotide 
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pair �𝐴𝑖 ,𝐵𝑗� occurring as an aligned pair, as 
opposed to a nonaligned pair. Therefore, we have: 

𝑠�𝐴𝑖 ,𝐵𝑗� = 𝑘𝑙𝑜𝑔 �
𝑝𝐴𝑖𝐵𝑗
𝑝𝐴𝑖𝑝𝐵𝑗

� 

It is intuitively obvious that taking random 
sequences that were generated according to a given 
underlying letter-distribution, and aligning these 
sequences randomly, the frequency of letter pairs 
should differ depending on the distribution of the 
letters. In aligning biological sequences one would 
expect identities and conservative substitutions to 
be more frequent than they would appear in chance 

alignments (𝑝𝐴𝑖𝐵𝑗 > 𝑝𝐴𝑖𝑝𝐵𝑗). Therefore, these 
columns should contribute positive terms to the 
score of an alignment �𝑠�𝐴𝑖,𝐵𝑗� > 0�. Similarly, 
non-conservative changes should be less frequent, 
than they would be in chance alignments �𝑝𝐴𝑖𝐵𝑗 <

𝑝𝐴𝑖𝑝𝐵𝑗�. Therefore, the columns corresponding to 
non-conservative changes should contribute 
negative terms to the alignment score �𝑠�𝐴𝑖 ,𝐵𝑗� <
0�. 
 

 

 
Fig. 5. Alignment represents a specific hypothesis about the evolution of the sequences 
 

The question is how to determine the 
parameters in the scoring model. There are two 
main approaches: 1) counting the frequencies of 
aligned pairs and of gaps in confirmed alignments, 
and to set the probabilities 𝑝𝐴𝑖𝐵𝑗 , 𝑝𝐴𝑖 , 𝑝𝐵𝑗  and 𝑔�𝑙𝑔� 
to the normalized frequencies. In this approach one 
have to be careful in assembling a random sample 
of confirmed aligned sequences, because for 
example protein sequences come in families; 2) if 
sequences evolve on a given phylogenetic tree, 
knowing the evolutionary rate matrix 𝑄 and the 
stationary distribution of the sequences we can 
estimate 𝑝𝐴𝑖𝐵𝑗  and therefore, the score for aligning 
nucleotides 𝐴𝑖 and 𝐵𝑗  has the form: 
 

𝑠�𝐴𝑖 ,𝐵𝑗|𝑡� = 𝑘𝑙𝑜𝑔 �
𝑒𝑡𝑄𝐴𝑖𝐵𝑗

𝑝𝐵𝑗
� 

 
where 𝑡 is the degree of evolutionary divergence 
that we are focusing on and 𝑒𝑡𝑄𝐴𝑖𝐵𝑗 =

𝑝𝐴𝑖𝐵𝑗
𝑝𝐴𝑖

 is the 

conditional probability that 𝐴𝑖 is replaced by 𝐵𝑗  in 
time 𝑡. The above expression follows from the 
stationarity and time-reversibility of the Markov 
process (8). In this approach one have to be careful 
with the fact that different pairs of sequences have 
diverged by different amounts. Thus, when two 

sequences have diverged from a common ancestor 
very recently, many pairs will be identical. 
Therefore, 𝑝𝐴𝑖𝐵𝑗 ≪ 1 for 𝐴𝑖 ≠ 𝐵𝑗  and 𝑠�𝐴𝑖 ,𝐵𝑗� <
0. In the opposite case 𝑝𝐴𝑖𝐵𝑗 ≈ 𝑝𝐴𝑖𝑝𝐵𝑗  and 
𝑠�𝐴𝑖,𝐵𝑗� ≈ 0. 

Specifying an appropriate score matrix is 
central to sequence comparison methods, and much 
effort has been devoted to defining, analyzing, and 
refining such matrices (2, 10, 11, 15). 

The probability of a gap occurring at a 
particular site in the sequence is the product of a 
function 𝑔�𝑙𝑔� of the gap-length and the combined 
probability of the set of inserted nucleotides 
∏ 𝑝𝐴𝑖𝑖∈𝑔  (1, 8). 

𝑃(𝑔) = 𝑔�𝑙𝑔��𝑝𝐴𝑖
𝑖∈𝑔

 

The total score of the alignment 𝓐 of sequence 
𝐴 and sequence 𝐵 is sum of scores for each aligned 
pair of nucleotides, plus the term for gaps. 
 

𝑆(𝐴,𝐵) = � 𝑘𝑙𝑜𝑔 �
𝑝𝐴𝑖𝐵𝑗
𝑝𝐴𝑖𝑝𝐵𝑗

�
(𝑖𝑗)∈𝓐

+ �𝑘𝑙𝑜𝑔 �𝑔�𝑙𝑔��
𝑙𝑔

 

 
Dynamic programming algorithms 
Because of the time-reversibility of the substitution 
model - there are not any restrictions on the Markov 
process that operates at the variable sites other than 
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that it is stationary and reversible - the likelihood 
that one sequence evolved into the other is twice the 
time that separates the ancestor from the two 
descendants. This likelihood is, by definition, the 
total probability corresponding to all evolutionary 
histories that are consistent with the observed 
sequences. Waterman (18) presents a brief 
combinatorial treatment of alignments to estimate 
the number of different alignments between two 
sequences with lengths 𝑁 and 𝑀. He points out that 
If one does not count permutations such as: 

G
−
−
C      and     

−
C

G
− 

there are �𝑀𝑘 � �
𝑁
𝑘� alignments with 𝑘 aligned pairs. 

Therefore, all alignments are: 
∑ �𝑀𝑘 � �

𝑁
𝑘�𝑘≥0 = �𝑀 + 𝑁

𝑁 � and for 𝑁 = 𝑀 we have 

�2𝑁
𝑁 � ≈ 1

√𝑁𝜋
22𝑁 

 
Thus, for two sequences of length 1000 we 

have 1
√1000𝜋

22000 ≈ 10600 alignments. Obviously, 
there are extremely many of these evolutionary 
histories, so a direct evaluation of this sum is 
impractical. However, a dynamic programming 

approach is possible that computes this sum in 
reasonable time. 

Here we examine the exhaustive schemes, 
which are classically formulated as dynamic 
programming algorithms. They consist either of 
optimization schemes which find the best alignment 
for a given model, or of probabilistic schemes 
based on partition functions - in which all 
alignments, with their respective weights, are 
evaluated. 

The first method for generating sequence 
alignments based on Dynamic programming was 
described by Needleman and Wunsch (13) and was 
based on maximizing the similarity score between 
sequences. The idea of dynamic programming is to 
build up an optimal alignment using previous 
solutions for optimal alignments of smaller 
subsequences (8). 

Consider a pair of sequences A and B, of 
lengths 𝑁 and 𝑀, respectively. The goal is to 
compute 𝑆(𝑁,𝑀). To achieve it we need to 
evaluate the best intermediate alignments 𝑆(𝑖, 𝑗) for 
the substrings (𝐴1,𝐴2, …𝐴𝑖) and (𝐵1,𝐵2, …𝐵𝑗) as 
shown in Fig. 6. 
 

 
Fig. 6. To express the score 𝑆(𝑖, 𝑗) we decompose partial alignments into three cases that can occur at the ends 𝐴𝑖 ,𝐵𝑗: 1) 𝐴𝑖 

matches to 𝐵𝑗  - �
𝐴𝑖
𝐵𝑗
�; 2) 𝐴𝑖 is alignment to gap - �𝐴𝑖−� and 3) 𝐵𝑗  is alignment to gap - �

−
𝐵𝑗�. Additionally we need to know 

values of 𝑆(𝑖 − 1, 𝑗), 𝑆(𝑖, 𝑗 − 1), 𝑆(𝑖 − 1, 𝑗 − 1). 
 
We start by initializing: 

�
𝑆(0,0) = 0                                                             the score for alignment at the beginning
𝑆(𝑖, 0) = 𝑘𝑙𝑜𝑔�𝑔(𝑖)�    the score for alignment of all residues of sequence A to gaps
𝑆(0, 𝑗) = 𝑘𝑙𝑜𝑔�𝑔(𝑗)�    the score for alignment of all residues of sequence B to gaps

 

This process can be expressed more formally: 

𝑆(𝑖, 𝑗) = 𝑚𝑎𝑥

⎩
⎪
⎨

⎪
⎧𝑆(𝑖 − 1, 𝑗 − 1) + 𝑆�𝐴𝑖 ,𝐵𝑗�  𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 �

𝐴𝑖
𝐵𝑗
�

𝑆(𝑖,−1𝑗) + 𝑆(𝐴𝑖 ,−)             𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡� �𝐴𝑖−�

𝑆(𝑖, 𝑗 − 1) + 𝑆�−,𝐵𝑗�           𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 �
−
𝐵𝑗�

 

 
The above equation presents a recursive 

relation between adjacent cells in the array 𝑆. In 
that manner we compute iteratively consecutive 
values of cells in the 𝑆 matrix obtaining a path from 

top left to the bottom right. It is important to note 
that all possible alignments between two sequences 
correspond one-to-one to such directed paths in the 
𝑆 matrix. The best score for an alignment of 
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sequences (𝐴1,𝐴2, …𝐴𝑁) and (𝐵1,𝐵2, …𝐵𝑀), by 
definition, is the value of the final cell of the matrix 
𝑆 (Fig. 7). 

 

 

 
Fig. 7. Example of global alignment path for sequences CGTATCCT and CTTGACT, and path iterative cell by cell 
extension 
 

To find the path we need to trace back through 
the cells with maximum value of 𝑆(𝑖, 𝑗). Local 
sequence alignment problem can be easily solved 
by modification of the algorithm for the global 
alignment. Thus, when adjacent cells have a 
negative score then we have to assign 0 score for 
the considered cell. 

By using the approach of path representation of 
suboptimal alignments, one can miss alignments 
with biological correct solutions. This can be avoid 
by taking into account the partition function of all 
possible paths or alignments between two 
sequences. Computation of the partition function 
for alignments was pioneered by Miyazawa (12). 

The score for the alignment of two sequences A 
and B is the sum of the scores for all gaps in the 
alignment, plus the sum of the scores for all 
substitutions: 

𝑆(𝓐) = 𝑘 � � 𝑙𝑜𝑔�
𝑝𝐴𝑖𝐵𝑗
𝑝𝐴𝑖𝑝𝐵𝑗

�
(𝑖𝑗)∈𝓐

+ �𝑙𝑜𝑔 �𝑔�𝑙𝑔��
𝑙𝑔

� 

 
Therefore, for the probability of a particular 

alignment between the sequences 𝐴 and 𝐵 we can 
write: 

𝑒𝑆(𝓐) = 𝑒
𝑘�∑ 𝑙𝑜𝑔�

𝑝𝐴𝑖𝐵𝑗
𝑝𝐴𝑖𝑝𝐵𝑗

�(𝑖𝑗)∈𝓐 + ∑ 𝑙𝑜𝑔�𝑔�𝑙𝑔��𝑙𝑔 �

= �
∏ 𝑔�𝑙𝑔�∏ 𝑝𝐴𝑖𝐵𝑗(𝑖𝑗)∈𝓐𝑙𝑔

∏ 𝑝𝐴𝑖𝑝𝐵𝑗(𝑖𝑗)∈𝓐
�
𝑘

= �
𝑃(𝓐)

𝑃(𝐴)𝑃(𝐵)�
𝑘

 

where 𝑃(𝐴) = ∏ 𝑝𝐴𝑖𝑖  and 𝑃(𝐵) = ∏ 𝑝𝐵𝑗𝑗  are the 
random probabilities for the sequences A and B. 

Therefore, 𝑃(𝓐) ≈ 𝑒
𝑆(𝓐)
𝑘  

The sum over the probabilities of all possible 
alignments 𝓐 between the two sequences 𝐴 and 𝐵 
has to be 1: 

∑ 𝑃(𝓐)𝓐 = 𝑐 ∑ 𝑒
𝑆(𝓐)
𝑘𝓐 = 1 and therefore, 𝑃(𝓐) =

𝑒
𝑆(𝓐)
𝑘

∑ 𝑒
𝑆(𝓐)
𝑘𝓐

 

 
With analogy to statistical physics we can 

introduced a partition function: 
 

𝑃(𝓐, T) = 𝑒
𝑆(𝓐)
𝑘

𝑍(𝑇)
 and 𝑍 = ∑ 𝑒

𝑆(𝓐)
𝑘𝑇𝓐  

 
where the parameter T plays the role of 
temperature. The partition function is computed by 
means of a dynamic programming algorithm and 
used to determine the probability of an alignment as 
well as the probability of each possible match 
between two sequence positions. Using the additive 
property of the alignment score: 
 
𝑆(𝓐) = 𝑆𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑖, 𝑗) + 𝑆𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝑖, 𝑗) −  𝑆�𝐴𝑖 ,𝐵𝑗� 

 
We can write for the match probability (7): 
 

𝑃�𝐴𝑖 ,𝐵𝑗� =
𝑍𝑓𝑜𝑟𝑤𝑎𝑟𝑑�𝐴𝑖 ,𝐵𝑗�𝑍𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑�𝐴𝑖 ,𝐵𝑗�

𝑍𝑒
𝑆�𝐴𝑖,𝐵𝑗�

𝑘𝑇

 

 
where, 𝑍𝑓𝑜𝑟𝑤𝑎𝑟𝑑�𝐴𝑖 ,𝐵𝑗� and  𝑍𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑�𝐴𝑖 ,𝐵𝑗� are 
calculated in exactly the same way as 𝑆(𝑖, 𝑗)𝑓𝑜𝑟𝑤𝑎𝑟𝑑 
and 𝑆(𝑖, 𝑗)𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 with exception that instead 
taking the max we are summing. 
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Conclusions 
In this article our aim was to present an overview of 
the methods involved in sequence analysis from 
computational, biological, and statistical 
perspectives without following closely the 
historical events. We focus on those of them which 
are critical for current theoretical and application 
development. 

Thus, the acquisition of large multilocus 
sequence data is providing researchers with 
unprecedented amount of information. With these 
large quantities of data comes the increasing 
challenge regarding the best methods of sequence 
analysis. 

The comparison of a new sequence against a 
database of known sequences is perhaps the most 
important computer application in molecular 
sequence analysis. For closely related sequences 
there is a single optimal alignment which provides 
an accurate measure of similarity, structure, 
function and evolutionary history. However, with 
increasing evolutionary distances between 
nucleotide sequences the single optimal alignment 
method is replaced by an ensemble of alignments of 
almost equal. Moreover, with increasing 
evolutionary distance single optimal alignment 
methods tend to become sensitive to the choice of 
scoring parameters and therefore less reliable. In 
this regard we have also briefly focused on methods 
involved in determination of scoring parameters. 

The molecular structure and function may 
influence sequence evolution by generating 
sequence conservation or mutational hot spots of 
substitution or insertion/deletion events. Therefore, 
the probability of substitutions and the overall 
mutation rate varies in different regions of 
biological sequences. In this regard, knowledge of 
what parts of an alignment are reliably aligned and 
what parts display a high degree of ambiguity is of 
increasingly importance. 

It is generally accepted that the Smith-
Waterman local similarity search algorithm is the 
most sensitive technique to discover significant 
weak similarities between two sequences. However, 
this approach is based on a limited sample of 
suboptimal alignments and one can miss alignments 
with biological correct solutions. Therefore, we 
present the theory of probabilistic alignment 
derived from a thermodynamic partition function 
which can avoid this problem taking into 
consideration all possible alignments between two 
sequences. A probabilistic notion of alignment is 
also inherent to information-theoretic approaches. 

Recently there is increased interest in regards to 
thermodynamic partition function from 
computational methods for predicting 
evolutionarily conserved rather than 
thermodynamic structures of RNA and protein 
molecules. Recurring difficulties associated with 

alignment of structurally related, but otherwise 
diverged sequences include alternative alignment 
possibilities of insertions and deletions, region of 
length variations in which homology assessment is 
questionable or impossible, occurrence of localized 
excessive mutations to the point of saturation and 
loss of phylogenetic signals. Therefore, for 
diverged sequences optimizing similarity will not 
necessarily improve structure, function and 
evolutionary history assessments. 

Development of a method based on 
thermodynamic partition function for structurally 
related, but diverged sequences for simultaneous 
optimization of alignment and self-folding - the so-
called Sankoff's program for simultaneous 
prediction of secondary structure and alignment 
between nucleotide sequences - is great challenge. 
Still there is not a general solution for this long 
standing problem. 
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